首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamical behavior of an SIR epidemic model with birth pulse and pulse vaccination is discussed by means of both theoretical and numerical ways. This paper investigates the existence and stability of the infection-free periodic solution and the epidemic periodic solution. By using the impulsive effects, a Poincaré map is obtained. The Poincaré map, center manifold theorem, and bifurcation theorem are used to discuss flip bifurcation and bifurcation of the epidemic periodic solution. Moreover, the numerical results show that the epidemic periodic solution (period-one) bifurcates from the infection-free periodic solution through a supercritical bifurcation, the period-two solution bifurcates from the epidemic periodic solution through flip bifurcation, and the chaotic solution generated via a cascade of period-doubling bifurcations, which are in good agreement with the theoretical analysis.  相似文献   

2.
Impulsive control in a stage structure population model with birth pulses   总被引:1,自引:0,他引:1  
The dynamical behavior of a stage structure population model with birth pulses and impulsive pest management strategy is discussed analytically and numerically. It is assumed that birth pulse and impulsive pest management strategy act with the same period, but not simultaneously. The existence and stability of the positive 2T-period solution are investigated. By using center manifold theorem and bifurcation theorem, the conditions of existence for flip bifurcation are derived. Moreover, some detailed numerical results for phase portraits, periodic solutions, bifurcation diagram, and chaotic attractors, which are illustrated with two examples, are in good agreement with the theoretical analysis.  相似文献   

3.
In this paper, we study an SIR epidemic model with birth pulse and pulse vaccination. We present a new constructor method of Poincaré maps. Using this method, we construct a Poincaré map. However, for this Poincaré map, we can’t directly use the bifurcation theorem to discuss the existence of flip bifurcations. We use a new method to investigate the existence of flip bifurcations. We establish that the system undergoes flip bifurcation when the maximum birth rate passes some critical values. Furthermore, some numerical simulations are given to illustrate our results.  相似文献   

4.
In this paper, a three dimensional ratio-dependent chemostat model with periodically pulsed input is considered. By using the discrete dynamical system determined by the stroboscopic map and Floquet theorem, an exact periodic solution with positive concentrations of substrate and predator in the absence of prey is obtained. When β is less than some critical value the boundary periodic solution (xs(t), 0, zs(t)) is locally stable, and when β is larger than the critical value there are periodic oscillations in substrate, prey and predator. Increasing the impulsive period τ, the system undergoes a series of period-doubling bifurcation leading to chaos, which implies that the dynamical behaviors of the periodically pulsed ratio-dependent predator-prey ecosystem are very complex.  相似文献   

5.
Optimal pulse fishing policy in stage-structured models with birth pulses   总被引:3,自引:0,他引:3  
In this paper, we propose exploited models with stage structure for the dynamics in a fish population for which periodic birth pulse and pulse fishing occur at different fixed time. Using the stroboscopic map, we obtain an exact cycle of system, and obtain the threshold conditions for its stability. Bifurcation diagrams are constructed with the birth rate (or pulse fishing time or harvesting effort) as the bifurcation parameter, and these are observed to display complex dynamic behaviors, including chaotic bands with period windows, period-doubling, multi-period-halving and incomplete period-doubling bifurcation, pitch-fork and tangent bifurcation, non-unique dynamics (meaning that several attractors or attractor and chaos coexist) and attractor crisis. This suggests that birth pulse and pulse fishing provide a natural period or cyclicity that make the dynamical behaviors more complex. Moreover, we show that the pulse fishing has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. An interesting result is obtained that, after the birth pulse, the population can sustain much higher harvesting effort if the mature fish is removed as early as possible.  相似文献   

6.
具有密度依赖的生育脉冲单种群阶段结构模型   总被引:1,自引:0,他引:1  
给出具有密度依赖生育脉冲单种群阶段结构数学模型.通过研究其频闪映射所确定的离散动力系统,获得了具有生育脉冲的系统存在周期解及其稳定的阈值,当系统的参数超过阈值,存在一系列的分支并最终走向混沌,这说明生育脉冲使系统动力学行为变得非常复杂,提供了一个自然的周期,而使系统从倍周期分支到混沌.  相似文献   

7.
This paper deals with the model for matured population growth proposed in Cooke et al. [Interaction of matiration delay and nonlinear birth in population and epidemic models, J. Math. Biol. 39 (1999) 332–352] and the resulting SIS epidemic model. The dynamics of these two models are still largely undetermined, and in this paper, we perform some bifurcation analysis to the models. By applying the global bifurcation theory for functional differential equations, we are able to show that the population model allows multiple periodic solutions. For the SIS model, we obtain some local bifurcation results and derive formulas for determining the bifurcation direction and the stability of the bifurcated periodic solution.  相似文献   

8.
We extend a previous Gause-type predator–prey model to include a general monotonic and bounded seasonally varying functional response. The model exhibits rich dynamical behaviour not encountered when the functional response is not seasonally forced. A theoretical analysis is performed on the model to investigate the global stability of the boundary equilibria and the existence of periodic solutions. It is shown that, under certain well-defined conditions, the Poincaré map of the model undergoes a Hopf bifurcation leading to the appearance of a quasi-periodic solution. Numerical results are given for the Poincaré sections and bifurcation diagrams for Holling-types II and III functional responses, using the amplitude of seasonal variation as bifurcation parameter. The model shows a rich variety of behaviour, including period doubling, quasi-periodicity, chaos, transient chaos, and windows of periodicity.  相似文献   

9.
In pest control, there are only a few papers on mathematical models of the dynamics of microbial diseases. In this paper a model concerning biologically-based impulsive control strategy for pest control is formulated and analyzed. The paper shows that there exists a globally stable susceptible pest eradication periodic solution when the impulsive period is less than some critical value. Further, the conditions for the permanence of the system are given. In addition, there exists a unique positive periodic solution via bifurcation theory, which implies both the susceptible pest and the infective pest populations oscillate with a positive amplitude. In this case, the susceptible pest population is infected to the maximum extent while the infective pest population has little effect on the crops. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamic, which implies that this model has more complex dynamics, including period-doubling bifurcation, chaos and strange attractors.  相似文献   

10.
According to biological strategy for pest control, we investigate the dynamic behavior of a pest management SEI model with saturation incidence concerning impulsive control strategy-periodic releasing infected pests at fixed times. We prove that all solutions of the system are uniformly ultimately bounded and there exists a globally asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. When the impulsive period is larger than some critical value, the stability of the pest-eradication periodic solution is lost; the system is uniformly permanent. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by period-doubling cascade, symmetry-breaking pitchfork bifurcation, quasi-periodic oscillate, chaos, and non-unique dynamics.  相似文献   

11.
A delayed SEIRS epidemic model with pulse vaccination and saturation incidence rate is investigated. Using the discrete dynamical system determined by the stroboscopic map, we obtain the existence of the disease-free periodic solution and its exact expression. Further, using the comparison theorem, we establish the sufficient conditions of global attractivity of the disease-free periodic solution and the permanence of disease. Our results indicate that a long latent period of the disease or a proper pulse vaccination rate will lead to eradication of the disease.  相似文献   

12.
13.
In the paper, we investigate an eco-epidemic system with impulsive birth. The conditions for the stability of infection-free periodic solution are given by applying Floquet theory of linear periodic impulsive equation. And we give the conditions of persistence by constructing a consequence of some abstract monotone iterative schemes. By using the method of coincidence degree, a set of sufficient conditions are derived for the existence of at least one strictly positive periodic solution. Finally, numerical simulation shows that there exists a stable positive periodic solution with a maximum value no larger than a given level. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels.  相似文献   

14.
具饱和传染率的脉冲免疫接种SIRS模型   总被引:1,自引:0,他引:1  
研究了具饱和传染率的脉冲免疫接种SIRS模型的一致持续生存和周期解,得到了无病周期解全局渐近稳定的充分条件和系统一致持续生存的充分条件,并应用分支理论得到了正周期解存在的分支参数.  相似文献   

15.
A delayed SIRS epidemic model with pulse vaccination and saturated contact rate is investigated. By using the discrete dynamical system determined by the stroboscopic map, we obtain the exact infection-free periodic solution of the system. Further, by using the comparison theorem, we prove that under the condition that R0 < 1 the infection-free periodic solution is globally attractive, and that under the condition that R′ > 1 the disease is uniformly persistent, which means that after some period of time the disease will become endemic.  相似文献   

16.
In this paper, a biochemical model with the impulsive perturbations is considered. By using the Floquet theorem, we find the boundary-periodic solution is asymptotically stable if the impulsive period is larger than a critical value. On the contrary, it is unstable if the impulsive period is less than the critical value. The problem of finding nontrivial periodic solutions is reduced to showing the existence of the nontrivial fixed points for the associated stroboscopic mapping of time snapshot equal to the common period of input. It is then shown that once a threshold condition is reached, a stable nontrivial periodic solution emerges via a supercritical bifurcation. Furthermore, influences of the impulsive input on the inherent oscillations are studied numerically, which shows the rich dynamics in the positive octant.  相似文献   

17.
Natural population, whose population numbers are small and generations are non-overlapping, can be modelled by difference equations that describe how the population evolve in discrete time-steps. This paper investigates a recent study on the dynamics complexities in a single-species discrete population model with stage structure and birth pulses. Using the stroboscopic map, we obtain an exact cycle of system, and obtain the threshold conditions for its stability. Above this, there is a characteristic sequence of bifurcations, leading to chaotic dynamics, which implies that this the dynamical behaviors of the single-species discrete model with birth pulses are very complex, including (a) non-unique dynamics, meaning that several attractors and chaos coexist; (b) small-amplitude annual oscillations; (c) large-amplitude multi-annual cycles; (d) chaos. Some interesting results are obtained and they showed that pulsing provides a natural period or cyclicity that allows for a period-doubling route to chaos.  相似文献   

18.
In this paper, we introduce and study a model of a Monod type food chain chemostat with pulsed input and washout. We investigate the subsystem with substrate and prey and study the stability of the periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields an invasion threshold. By use of standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in substrate, prey and predator. Simple cycles may give way to chaos in a cascade of period-doubling bifurcations. Furthermore, by comparing bifurcation diagrams with different bifurcation parameters, we can see that the impulsive system shows two kinds of bifurcations, whose are period-doubling and period-halving.  相似文献   

19.
具有常数输入的非自治SIR流行病模型周期解的存在性   总被引:1,自引:0,他引:1  
利用MAWHIN重合度理论中的延拓定理研究了一类具有常数输入的非自治SIR流行病模型的非平凡周期解的存在性.并用MatLab对其进行了数值模拟,作出了模型的相图和解曲线图形.  相似文献   

20.
The dynamics of a predator–prey model with impulsive state feedback control, which is described by an autonomous system with impulses, is studied. The sufficient conditions of existence and stability of semi-trivial solution and positive period-1 solution are obtained by using the Poincaré map and analogue of the Poincaré criterion. The qualitative analysis shows that the positive period-1 solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams of periodic solutions are obtained by using the Poincaré map, and it is shown that a chaotic solution is generated via a cascade of period-doubling bifurcations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号