首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, dynamics of the fractional-order simplied Lorenz hyperchaotic system is investigated. Modied Adams-Bashforth-Moulton method is applied for numerical simulation. Chaotic regions and periodic windows are identied. Dierent types of motions are shown along the routes to chaos by means of phase portraits, bifurcation diagrams, and the largest Lyapunov exponent. The lowest fractional order to generate chaos is 3.8584. Synchronization between two fractional-order simplied Lorenz hyperchaotic systems is achieved by using active control method. The synchronization performances are studied by changing the fractional order, eigenvalues and eigenvalue standard deviation of the error system.  相似文献   

2.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This work presents multivalued chaotic synchronization via coupling based on the Poincaré plane. The coupling is carried out by an underdamped signal, triggered every crossing event of the trajectory of the master system through a previously defined Poincaré plane. A master–slave system is explored, and the synchronization between the systems is detected via the auxiliary system approach and the maximum conditional Lyapunov exponent. Due to the response to specific conditions two phenomena may be obtained: univalued and multivalued synchronization. Since the Lyapunov exponent is not enough to detect these two phenomena, the distance between the pieces of trajectories of the slave and auxiliary systems with different initial conditions is also used as a tool for the detection of multivalued synchronization. Computer simulations using the benchmark chaotic systems of Lorenz and Rössler are used to exemplify the approach proposed.  相似文献   

4.
A note on phase synchronization in coupled chaotic fractional order systems   总被引:1,自引:0,他引:1  
The dynamic behaviors of fractional order systems have received increasing attention in recent years. This paper addresses the reliable phase synchronization problem between two coupled chaotic fractional order systems. An active nonlinear feedback control scheme is constructed to achieve phase synchronization between two coupled chaotic fractional order systems. We investigated the necessary conditions for fractional order Lorenz, Lü and Rössler systems to exhibit chaotic attractor similar to their integer order counterpart. Then, based on the stability results of fractional order systems, sufficient conditions for phase synchronization of the fractional models of Lorenz, Lü and Rössler systems are derived. The synchronization scheme that is simple and global enables synchronization of fractional order chaotic systems to be achieved without the computation of the conditional Lyapunov exponents. Numerical simulations are performed to assess the performance of the presented analysis.  相似文献   

5.
This article focuses on the problem of exponential synchronization for fractional‐order chaotic systems via a nonfragile controller. A criterion for α‐exponential stability of an error system is obtained using the drive‐response synchronization concept together with the Lyapunov stability theory and linear matrix inequalities approach. The uncertainty in system is considered with polytopic form together with structured form. The sufficient conditions are derived for two kinds of structured uncertainty, namely, (1) norm bounded one and (2) linear fractional transformation one. Finally, numerical examples are presented by taking the fractional‐order chaotic Lorenz system and fractional‐order chaotic Newton–Leipnik system to illustrate the applicability of the obtained theory. © 2014 Wiley Periodicals, Inc. Complexity 21: 114–125, 2015  相似文献   

6.
The method of estimation of the largest Lyapunov exponents for dynamical systems with time delay has been developed. This method can be applied both for flows and discrete maps. Our approach is based on the phenomenon of synchronization of identical systems coupled by linear negative feedback mechanism (flows) and exponential perturbation (maps). The existence of linear dependence of the largest Lyapunov exponent on the coupled parameter allows the precise estimation of this exponent.  相似文献   

7.
In this paper, we propose a novel methodology for automatically finding new chaotic attractors through a computational intelligence technique known as multi-gene genetic programming (MGGP). We apply this technique to the case of the Lorenz attractor and evolve several new chaotic attractors based on the basic Lorenz template. The MGGP algorithm automatically finds new nonlinear expressions for the different state variables starting from the original Lorenz system. The Lyapunov exponents of each of the attractors are calculated numerically based on the time series of the state variables using time delay embedding techniques. The MGGP algorithm tries to search the functional space of the attractors by aiming to maximise the largest Lyapunov exponent (LLE) of the evolved attractors. To demonstrate the potential of the proposed methodology, we report over one hundred new chaotic attractor structures along with their parameters, which are evolved from just the Lorenz system alone.  相似文献   

8.
This work presents a direct approach to design stabilizing controller based on a special matrix structure to synchronize chaotic systems and extends the approach to synchronize fractional chaotic systems. With this method, chaos synchronization is implemented in Lorenz chaotic systems with known parameters and the same to Lorenz chaotic systems with unknown parameters. Especially, fractional Lorenz chaotic system with unknown parameters is synchronized by fractional Chen chaotic system too. Numerical simulations confirm the effectiveness of the method proposed.  相似文献   

9.
This paper analyzes the synchronization of two fractional Lorenz systems in two cases: the first one considering fractional Lorenz systems with unknown parameters, and the second one considering known upper bounds on some of the fractional Lorenz systems parameters. The proposed control strategies use a reduced number of control signals and control parameters, employing mild assumptions. The stability of the synchronization errors is analytically demonstrated in all cases, and the convergence to zero of the synchronization errors is analytically proved in the case when the upper bounds on some system parameters are assumed to be known. Simulation studies are presented, which allows verifying the effectiveness of the proposed control strategies.  相似文献   

10.
Based on the stability theory of fractional order systems, this paper analyses the synchronization conditions of the fractional order chaotic systems with activation feedback method. And the synchronization of commensurate order hyperchaotic Lorenz system of the base order 0.98 is implemented based on this method. Numerical simulations show the effectiveness of this method in a class of fractional order chaotic systems.  相似文献   

11.
Estimation of the largest Lyapunov exponent in systems with impacts   总被引:3,自引:0,他引:3  
The method of estimation of the largest Lyapunov exponent for mechanical systems with impacts using the properties of synchronization phenomenon is demonstrated. The presented method is based on the coupling of two identical dynamical systems and is tested on the classical Duffing oscillator with impacts.  相似文献   

12.
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.  相似文献   

13.
本文研究了Lorenz系统的控制与同步问题.利用负状态反馈的方法和Lyapunov稳定性理论,得到了能保证系统渐近稳定和同步的有关反馈增益的一些充分条件.最后,数值实验证实了理论分析的结果.  相似文献   

14.
In this paper we report for the first time on the binary generalized synchronization, when for the certain values of the coupling strength two unidirectionally coupled dynamical systems generating the aperiodic binary sequences are in the generalized synchronization regime. The presence of the binary generalized synchronization has been revealed with the help of both the auxiliary system approach and the largest conditional Lyapunov exponent calculation. The mechanism resulting in the binary generalized synchronization has been explained. The finding discussed in this paper gives a strong potential for new applications under many relevant circumstances.  相似文献   

15.
A new general strategy to achieve chaos synchronization by variable strength linear coupling without another active control is proposed. They give the criteria of chaos synchronization for two identical chaotic systems and two different chaotic dynamic systems with variable strength linear coupling. In this method, the time derivative of Lyapunov function in series form is firstly used. Lorenz system, Duffing system, Rössler system and Hyper-Rössler system are presented as simulated examples.  相似文献   

16.
A new general strategy to achieve chaos synchronization by variable strength linear coupling without another active control is proposed. They give the criteria of chaos synchronization for two identical chaotic systems and two different chaotic dynamic systems with variable strength linear coupling. In this method, the time derivative of Lyapunov function in series form is firstly used. Lorenz system, Duffing system, Rössler system and Hyper-Rössler system are presented as simulated examples.  相似文献   

17.
If you are given a simple three-dimensional autonomous quadratic system that has only one stable equilibrium, what would you predict its dynamics to be, stable or periodic? Will it be surprising if you are shown that such a system is actually chaotic? Although chaos theory for three-dimensional autonomous systems has been intensively and extensively studied since the time of Lorenz in the 1960s, and the theory has become quite mature today, it seems that no one would anticipate a possibility of finding a three-dimensional autonomous quadratic chaotic system with only one stable equilibrium. The discovery of the new system, to be reported in this Letter, is indeed striking because for a three-dimensional autonomous quadratic system with a single stable node-focus equilibrium, one typically would anticipate non-chaotic and even asymptotically converging behaviors. Although the equilibrium is changed from an unstable saddle-focus to a stable node-focus, therefore the familiar Ši’lnikov homoclinic criterion is not applicable, it is demonstrated to be chaotic in the sense of having a positive largest Lyapunov exponent, a fractional dimension, a continuous broad frequency spectrum, and a period-doubling route to chaos.  相似文献   

18.
Numerical solution and chaotic behaviors of the fractional‐order simplified Lorenz hyperchaotic system are investigated in this paper. The solution of the fractional‐order hyperchaotic system is obtained by employing Adomian decomposition method. Lyapunov characteristic exponents algorithm for the fractional‐order chaotic system is designed. Dynamics of the fractional‐order hyperchaotic system are analyzed by means of bifurcation diagrams, Lyapunov characteristic exponents, C0 complexity, and chaos diagram. It shows that this system has rich dynamical behaviors, and it is more complex when the fractional order q is small. It lays a foundation for the practical application of the fractional‐order hyperchaotic systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces another novel type of chaos synchronization – full state hybrid projective synchronization (FSHPS), which includes complete synchronization, anti-synchronization and projective synchronization as its special item. Based on the Lyapunov’s direct method, the general FSHPS scheme is given and illustrated with Lorenz chaotic system and hyperchaotic Chen system as examples. Numerical simulations are used to verify the effectiveness of the proposed scheme.  相似文献   

20.
In this article, the active control method is used for synchronization of two different pairs of fractional order systems with Lotka–Volterra chaotic system as the master system and the other two fractional order chaotic systems, viz., Newton–Leipnik and Lorenz systems as slave systems separately. The fractional derivative is described in Caputo sense. Numerical simulation results which are carried out using Adams–Bashforth–Moulton method show that the method is easy to implement and reliable for synchronizing the two nonlinear fractional order chaotic systems while it also allows both the systems to remain in chaotic states. A salient feature of this analysis is the revelation that the time for synchronization increases when the system-pair approaches the integer order from fractional order for Lotka–Volterra and Newton–Leipnik systems while it reduces for the other concerned pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号