首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
This paper proposes an extended substitution–diffusion based image cipher using chaotic standard map [1] and linear feedback shift register to overcome the weakness of previous technique by adding nonlinearity. The first stage consists of row and column rotation and permutation which is controlled by the pseudo-random sequences which is generated by standard chaotic map and linear feedback shift register, second stage further diffusion and confusion is obtained in the horizontal and vertical pixels by mixing the properties of the horizontally and vertically adjacent pixels, respectively, with the help of chaotic standard map. The number of rounds in both stage are controlled by combination of pseudo-random sequence and original image. The performance is evaluated from various types of analysis such as entropy analysis, difference analysis, statistical analysis, key sensitivity analysis, key space analysis and speed analysis. The experimental results illustrate that performance of this is highly secured and fast.  相似文献   

2.
Recently [Solak E, Çokal C, Yildiz OT Biyikogˇlu T. Cryptanalysis of Fridrich’s chaotic image encryption. Int J Bifur Chaos 2010;20:1405-1413] cryptanalyzed the chaotic image encryption algorithm of [Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259-1284], which was considered a benchmark for measuring security of many image encryption algorithms. This attack can also be applied to other encryption algorithms that have a structure similar to Fridrich’s algorithm, such as that of [Chen G, Mao Y, Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749-761]. In this paper, we suggest a novel image encryption algorithm based on a three dimensional (3D) chaotic map that can defeat the aforementioned attack among other existing attacks. The design of the proposed algorithm is simple and efficient, and based on three phases which provide the necessary properties for a secure image encryption algorithm including the confusion and diffusion properties. In phase I, the image pixels are shuffled according to a search rule based on the 3D chaotic map. In phases II and III, 3D chaotic maps are used to scramble shuffled pixels through mixing and masking rules, respectively. Simulation results show that the suggested algorithm satisfies the required performance tests such as high level security, large key space and acceptable encryption speed. These characteristics make it a suitable candidate for use in cryptographic applications.  相似文献   

3.
In this paper, we propose a new loss-less symmetric image cipher based on the widely used substitution–diffusion architecture which utilizes chaotic standard and logistic maps. It is specifically designed for the coloured images, which are 3D arrays of data streams. The initial condition, system parameter of the chaotic standard map and number of iterations together constitute the secret key of the algorithm. The first round of substitution/confusion is achieved with the help of intermediate XORing keys calculated from the secret key. Then two rounds of diffusion namely the horizontal and vertical diffusions are completed by mixing the properties of horizontally and vertically adjacent pixels, respectively. In the fourth round, a robust substitution/confusion is accomplished by generating an intermediate chaotic key stream (CKS) image in a novel manner with the help of chaotic standard and logistic maps. The security and performance of the proposed image encryption technique has been analyzed thoroughly using various statistical analysis, key sensitivity analysis, differential analysis, key space analysis, speed analysis, etc. Results of the various types of analysis are encouraging and suggest that the proposed image encryption technique is able to manage the trade offs between the security and speed and hence suitable for the real-time secure image and video communication applications.  相似文献   

4.
A block encryption algorithm using dynamic sequences generated by multiple chaotic systems is proposed in this paper. In this algorithm, several one-dimension chaotic maps generate pseudo-random sequences, which are independent and approximately uniform. After a series of transformations, the sequences constitute a new pseudo-random sequence uniformly distributing in the value space, which covers the plaintext by executing Exclusive-OR and shifting operations some rounds to form the cipher. This algorithm makes the pseudo-random sequence possess more concealment and noise like characteristic, and overcomes the periodic malpractice caused by the computer precision and single chaotic system. Simulation results show that the algorithm is efficient and useable for the security of communication system.  相似文献   

5.
In this paper, a block encryption scheme based on dynamic substitution boxes (S-boxes) is proposed. Firstly, the difference trait of the tent map is analyzed. Then, a method for generating S-boxes based on iterating the tent map is presented. The plaintexts are divided into blocks and encrypted with different S-boxes. The cipher blocks are obtained by 32 rounds of substitution and left cyclic shift. To improve the security of the cryptosystem, a cipher feedback is used to change the state value of the tent map, which makes the S-boxes relate to the plaintext and enhances the confusion and diffusion properties of the cryptosystem. Since dynamic S-boxes are used in the encryption, the cryptosystem does not suffer from the problem of fixed structure block ciphers. Theoretical and experimental results indicate that the cryptosystem has high security and is suitable for secure communications.  相似文献   

6.
Many research efforts for image encryption schemes have elaborated for designing nonlinear functions since security of these schemes closely depends on inherent characteristics of nonlinear functions. It is commonly believed that a chaotic map can be used as a good candidate of a nonlinear component for image encryption schemes. We propose a new image encryption algorithm using a large pseudorandom permutation which is combinatorially generated from small permutation matrices based on chaotic maps. The random-like nature of chaos is effectively spread into encrypted images by using the permutation matrix. The experimental results show that the proposed encryption scheme provides comparable security with that of the conventional image encryption schemes based on Baker map or Logistic map.  相似文献   

7.
In this paper, a novel image encryption scheme using coupled map lattices (CML) with time delay is proposed. By employing discretized tent map to shuffle the positions of image pixels and then using delayed coupled map lattices (DCML) to confuse the relationship between the plain-image and the cipher-image, image encryption algorithms with permutation-diffusion structure are introduced in detail. In the process of generating keystream, the time-varying delay is also embedded in our proposed scheme to enhance the security. Theoretical analysis and computer experiments confirm that the new algorithm possesses high security for practical image encryption.  相似文献   

8.
In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.  相似文献   

9.
An efficient diffusion approach for chaos-based image encryption   总被引:2,自引:0,他引:2  
One of the existing chaos-based image cryptosystems is composed of alternative substitution and diffusion stages. A multi-dimensional chaotic map is usually employed in the substitution stage for image pixel permutation while a one-dimensional (1D) chaotic map is used for diffusion purpose. As the latter usually involves real number arithmetic operations, the overall encryption speed is limited by the diffusion stage. In this paper, we propose a more efficient diffusion mechanism using simple table lookup and swapping techniques as a light-weight replacement of the 1D chaotic map iteration. Simulation results show that at a similar security level, the proposed cryptosystem needs about one-third the encryption time of a similar cryptosystem. The effective acceleration of chaos-based image cryptosystems is thus achieved.  相似文献   

10.
In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation–substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.  相似文献   

11.
This paper describes the security weakness of a recently proposed image encryption algorithm based on a logistic-like new chaotic map. We show that the chaotic map’s distribution is far from ideal, thus making it a bad candidate as a pseudo-random stream generator. As a consequence, the images encrypted with this algorithm are shown to be breakable through different attacks of variable complexity.  相似文献   

12.
For many years dissipative quantum maps were widely used as informative models of quantum chaos. In this paper, a new scheme for generating good pseudo-random numbers (PRNG), based on quantum logistic map is proposed. Note that the PRNG merely relies on the equations used in the quantum chaotic map. The algorithm is not complex, which does not impose high requirement on computer hardware and thus computation speed is fast. In order to face the challenge of using the proposed PRNG in quantum cryptography and other practical applications, the proposed PRNG is subjected to statistical tests using well-known test suites such as NIST, DIEHARD, ENT and TestU01. The results of the statistical tests were promising, as the proposed PRNG successfully passed all these tests. Moreover, the degree of non-periodicity of the chaotic sequences of the quantum map is investigated through the Scale index technique. The obtained result shows that, the sequence is more non-periodic. From these results it can be concluded that, the new scheme can generate a high percentage of usable pseudo-random numbers for simulation and other applications in scientific computing.  相似文献   

13.
This paper proposes a novel image encryption scheme based on rotation matrix bit-level permutation and block diffusion. Firstly, divide plain image into non-overlapping 8 × 8 pixels blocks with a random matrix, then transform each block into an 8 × 8 × 8 three-dimensional (3-D) binary matrix, which has six directions just as a cube. Permutation is performed by multiplying the 3-D matrix by the rotation matrix that relies on plain image according to different direction. Secondly, use block diffusion to further change the statistical characteristics of the image after confusion. Experiment results and analysis show that the scheme can not only achieve a satisfactory security performance, but also have the suitability for a parallel mode and the robustness against noise in communication system.  相似文献   

14.
A novel image encryption scheme based on spatial chaos map   总被引:1,自引:0,他引:1  
In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, spatial chaos system are used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail. The basic idea is to encrypt the image in space with spatial chaos map pixel by pixel, and then the pixels are confused in multiple directions of space. Using this method one cycle, the image becomes indistinguishable in space due to inherent properties of spatial chaotic systems. Several experimental results, key sensitivity tests, key space analysis, and statistical analysis show that the approach for image cryptosystems provides an efficient and secure way for real time image encryption and transmission from the cryptographic viewpoint.  相似文献   

15.
In recent years, a variety of chaos-based image cryptosystems have been proposed. The key used for encryption/decryption is usually independent of the plain-image. To achieve a satisfactory level of security, at least two overall rounds of the substitution-diffusion process are required so that a change in any pixels of the plain-image spreads over the whole cipher-image. Moreover, the receiver is not able to determine whether the decrypted image is exactly the one sent. In this paper, a fast image encryption and authentication scheme is proposed. In particular, a keyed hash function is introduced to generate a 128-bit hash value from both the plain-image and the secret hash keys. The hash value plays the role of the key for encryption and decryption while the secret hash keys are used to authenticate the decrypted image. Simulation results show that satisfactory security performance is achieved in only one overall round. The speed efficiency is thus improved.  相似文献   

16.
Recently, many scholars have proposed chaotic cryptosystems in order to promote communication security. However, there are a number of major problems detected in some of those schemes such as weakness against differential attack, slow performance speed, and unacceptable data expansion. In this paper, we introduce a new chaotic block cipher scheme for image cryptosystems that encrypts block of bits rather than block of pixels. It encrypts 256-bits of plainimage to 256-bits of cipherimage within eight 32-bit registers. The scheme employs the cryptographic primitive operations and a non-linear transformation function within encryption operation, and adopts round keys for encryption using a chaotic system. The new scheme is able to encrypt large size of images with superior performance speed than other schemes. The security analysis of the new scheme confirms a high security level and fairly uniform distribution.  相似文献   

17.
In recent years, a variety of chaos-based image cryptosystems have been studied. Most of them adopt the traditional confusion–diffusion architecture, which is considered insecure upon chosen/known plain-image attacks. In this paper, a nonlinear traverse on the plain-image using dependent diffusion and reverse cat map is proposed to replace the traditional linear traverse performed in the confusion phase. Two cryptosystems are designed and are implemented by software means. Simulation results and numerical analysis justify their high efficiency and sufficient strength.  相似文献   

18.
The topic of quantum chaos has begun to draw increasing attention in recent years. While a satisfactory definition for it is not settled yet in order to differentiate between its classical counterparts. Dissipative quantum maps can be characterized by sensitive dependence on initial conditions, like classical maps. Considering this property, an implementation of image encryption scheme based on the quantum logistic map is proposed. The security and performance analysis of the proposed image encryption is performed using well-known methods. The results of the reliability analysis are encouraging and it can be concluded that, the proposed scheme is efficient and secure. The results of this study also suggest application of other quantum maps such as quantum standard map and quantum baker map in cryptography and other aspects of security and privacy.  相似文献   

19.
This paper proposes a novel color image cryptosystem based on synchronization of two different six-dimensional hyperchaotic systems. In the transmitter end, we apply the drive system to generate the diffusion matrices and scrambling ones, which are used to change the image pixel value and position, respectively. Thus the ciphered image is obtained. In the receiver, synchronization of two nonidentical hyperchaotic systems can be achieved by designing the appropriate controllers. The response system is employed to yield the corresponding diffusion matrices and scrambling ones using the same generation method in the encryption algorithm. Then the cipher-image can be decrypted by the decryption algorithm, which is similar to that of the encryption process but in the reversed order. The experimental results show that the presented image cryptosystem has high security and can resist noise and crop attacks.  相似文献   

20.
Based on elementary cellular automata, a new image encryption algorithm is proposed in this paper. In this algorithm, a special kind of periodic boundary cellular automata with unity attractors is used. From the viewpoint of security, the number of cellular automata attractor states are changed with respect to the encrypted image, and different key streams are used to encrypt different plain images. The cellular neural network with chaotic properties is used as the generator of a pseudo-random key stream. Theoretical analysis and experimental results have both confirmed that the proposed algorithm possesses high security level and good performances against differential and statistical attacks. The comparison with other existing schemes is given, which shows the superiority of the proposal scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号