首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper deals with chaos synchronization between two different uncertain fractional order chaotic systems based on adaptive fuzzy sliding mode control (AFSMC). With the definition of fractional derivatives and integrals, a fuzzy Lyapunov synthesis approach is proposed to tune free parameters of the adaptive fuzzy controller on line by output feedback control law and adaptive law. Moreover, chattering phenomena in the control efforts can be reduced. The sliding mode design procedure not only guarantees the stability and robustness of the proposed AFSMC, but also the external disturbance on the synchronization error can be attenuated. The simulation example is included to confirm validity and synchronization performance of the advocated design methodology.  相似文献   

2.
This article deals with the problem of control of canonical non‐integer‐order dynamical systems. We design a simple dynamical fractional‐order integral sliding manifold with desired stability and convergence properties. The main feature of the proposed dynamical sliding surface is transferring the sign function in the control input to the first derivative of the control signal. Therefore, the resulted control input is smooth and without any discontinuity. So, the harmful chattering, which is an inherent characteristic of the traditional sliding modes, is avoided. We use the fractional Lyapunov stability theory to derive a sliding control law to force the system trajectories to reach the sliding manifold and remain on it forever. A nonsmooth positive definite function is applied to prove the existence of the sliding motion in a given finite time. Some computer simulations are presented to show the efficient performance of the proposed chattering‐free fractional‐order sliding mode controller. © 2015 Wiley Periodicals, Inc. Complexity 21: 224–233, 2016  相似文献   

3.
This study is concerned with the design of a disturbance-observer-based fuzzy terminal sliding mode controller (FTSMC) for multi-input multi-output (MIMO) uncertain nonlinear systems by considering unknown non-symmetric input saturation and control singularity. The disturbance observer is proposed for the unmeasured external disturbance and guarantees the convergence of the disturbance estimation error to zero in a finite time. The terminal sliding mode controller (TSMC) is designed for MIMO uncertain nonlinear systems by utilizing the output of the proposed disturbance observer. This control scheme combines the disturbance-observer-based TSMC with a fuzzy logic system in the presence of unknown non-symmetric input saturation and control singularity in order to reduce chattering phenomena. Finite time asymptotic stability, convergence of the disturbance observer, and convergence of the closed-loop system are proved via Lyapunov stability theorem. In addition, a five-rotor unmanned aerial vehicle (UAV) is employed in the numerical simulations to demonstrate the effectiveness and performance of the proposed control scheme. Disturbance observer estimates the payload and flight endurance of the five-rotor UAV. Genetic algorithm (GA) optimization is used to specify the parameters of the disturbance-observer-based TSMC (GATSMC) to decrease chattering. Finally, the superior performance of FTSMC is investigated over TSMC and GATSMC.  相似文献   

4.
This paper investigates the chaos control problem for a general class of chaotic systems. A feedback controller is established to guarantee asymptotical stability of the chaotic systems based on the sliding mode control theory. A new reaching law is introduced to solve the chattering problem that is produced by traditional sliding mode control. A dynamic compensator is designed to improve the performance of the closed-loop system in sliding mode, and its parameter is obtained from a linear matrix inequality (LMI). Simulation results for the well known Chua’s circuit and Lorenz chaotic system are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

5.
In this paper, an extended sliding mode controller is applied to control a hyperchaotic motion in Rössler system. The sliding surface of this paper used is one dimension higher than traditional sliding surface and guarantees it passing through the activated initial states of controlled system. Therefore, using the characteristic of this sliding mode to design a controller not only can meet the desired specification but also without chattering phenomenon and abrupt state change. By comparing with the result in the existed literatures, the results show that the proposed controller can steer Rössler system to the desired state accurately. It also provides a good characteristic for disturbance rejection.  相似文献   

6.
为了解决非线性、不确定电液伺服系统的位置跟踪控制问题,提出了一种基于反步法的自适应终端滑模控制方法.该方法将自适应控制和终端滑模方法结合在一起,一方面,提出的自适应控制律可以对电液伺服系统中的不确定性参数进行有效在线估计和补偿;另一方面,通过引入误差吸引子到滑模趋近律中得到变系数趋近律,设计的终端滑模控制律不仅能够消除普通终端滑模控制律中的非奇异项,还大大降低了滑模面的抖震.最终,根据Lyapunov稳定性理论,位置跟踪误差的有限时间稳定性得以严格证明.将该方法与积分反步滑模控制和线性滑模控制方法进行了对比研究,仿真结果验证了该方法在电液伺服系统位置跟踪控制方面良好的鲁棒性和跟踪精度.  相似文献   

7.
Dynamics and chaos control in nonlinear electrostatic transducers   总被引:2,自引:0,他引:2  
In this paper, we analyze the dynamics of a system consisting of two coupled nonlinearly Duffing oscillators, obtained from a nonlinear electrostatic device which is a prototype of emitters and receivers in communication engineering. Inverse or backward period doubling cascades and sudden transition to chaos are observed. A sliding mode controller is applied to control the electrostatic transducers system. The sliding surface used is one dimension higher than the traditional surface and guarantees its passage through the initial states of the controlled system. By means of the design of sliding mode dynamics characteristics, the controlled system performance is arbitrarily determined by assigning the switching gain of the sliding mode dynamics. Therefore, using the characteristic of this sliding mode we aim to design a controller that can meet the desired specification and use less control energy by comparing with the result in the current literature. The results show that the proposed controller can steer electrostatic transducers to the desired reference trajectory without chattering phenomenon and abrupt state change.  相似文献   

8.
In this article, a control scheme combining radial basis function neural network and discrete sliding mode control method is proposed for robust tracking and model following of uncertain time‐delay systems with input nonlinearity. The proposed robust tracking controller guarantees the stability of overall closed‐loop system and achieves zero‐tracking error in the presence of input nonlinearity, time‐delays, time‐varying parameter uncertainties, and external disturbances. The salient features of the proposed controller include no requirement of a priori knowledge of the upper bound of uncertainties and the elimination of chattering phenomenon and reaching phase. Simulation results are presented to demonstrate the effectiveness of the proposed scheme. © 2015 Wiley Periodicals, Inc. Complexity 21: 194–201, 2016  相似文献   

9.
In this paper, a sliding mode control design for fractional order systems with input and state time-delay is proposed. First, we consider a fractional order system without delay for which a sliding surface is proposed based on fractional integration of the state. Then, a stabilizing switching controller is derived. Second, a fractional system with state delay is considered. Third, a strategy including a fractional state predictor input delay compensation is developed. The existence of the sliding mode and the stability of the proposed control design are discussed. Numerical examples are given to illustrate the theoretical developments.  相似文献   

10.
A second order sliding mode (SOSM) controller using nonlinear sliding surface is proposed in this paper. The aim of the proposed controller is to guarantee stability as well as enhance the transient performance of uncertain linear systems with parametric uncertainty. The nonlinear sliding surface consists of a linear term and a nonlinear term. The linear term comprises a gain matrix which has a very low value of damping ratio and thereby facilitates fast response. The nonlinear term is introduced to accommodate a variable damping ratio to reduce overshoot and settling time of the closed loop system as the output reaches nearer the desired reference position. A major gain of the proposed SOSM controller is the elimination of chattering in the control input. The proposed nonlinear sliding surface based SOSM controller achieves fast rise, low overshoot and low settling time. Simulation results demonstrate the effectiveness of the proposed SOSM controller.  相似文献   

11.
This work presents an adaptive sliding mode control scheme to elucidate the robust chaos suppression control of non-autonomous chaotic systems. The proposed control scheme utilizes extended systems to ensure that continuous control input is obtained in order to avoid chattering phenomenon as frequently in conventional sliding mode control systems. A switching surface is adopted to ensure the relative ease in stabilizing the extended error dynamics in the sliding mode. An adaptive sliding mode controller (ASMC) is then derived to guarantee the occurrence of the sliding motion, even when the chaotic horizontal platform system (HPS) is undergoing parametric uncertainties. Based on Lyapunov stability theorem, control laws are derived. In addition to guaranteeing that uncertain horizontal platform chaotic systems can be stabilized to a steady state, the proposed control scheme ensures asymptotically tracking of any desired trajectory. Furthermore, the numerical simulations verify the accuracy of the proposed control scheme, which is applicable to another chaotic system based on the same design scheme.  相似文献   

12.
Most physical systems inherently contain nonlinearities which are commonly unknown to the system designer. Therefore, in modeling and analysis of such dynamic systems, one needs to handle unknown nonlinearities and/or uncertain parameters. This paper proposes a new adaptive tracking fuzzy sliding mode controller for a class of nonlinear systems in the presence of uncertainties and external disturbances. The main contribution of the proposed method is that the structure of the controlled system is partially unknown and does not require the bounds of uncertainty and disturbance of the system to be known; meanwhile, the chattering phenomenon that frequently appears in the conventional variable structure systems is also eliminated without deteriorating the system robustness. The performance of the proposed approach is evaluated for two well-known benchmark problems. The simulation results illustrate the effectiveness of our proposed controller.  相似文献   

13.
In order to improve the performance of the sliding mode controller, fuzzy logic sliding mode controller is proposed in this study. The control gain of the conventional sliding mode controller is tuned by a fuzzy logic rule base and, also dynamic sliding surfaces are obtained by changing their slopes using the error states of the system in another fuzzy logic algorithm. These controllers are then combined in order to enhance the performance. Afterwards, proposed controllers were used in trajectory control of a three degrees of freedom spatial robot, which is subjected to noise and parameter variations. Finally, the controllers introduced are compared with a PID controller which is commonly used for control of robotic manipulators in industry. The results indicate the superior performance of the proposed controller.  相似文献   

14.
This paper investigates the output-feedback control for a general class of multi-input multi-output (MIMO) linear systems in the presence of unmatched disturbances. Firstly, a new observer composed of a Luenberger observer and a novel hierarchical high-order sliding mode (HOSM) observer is proposed to identify the system states and disturbances, simultaneously. As one of the most remarkable properties, the convergence time of the proposed observer is bounded by a positive constant which is free of the system initial error conditions. Secondly, based on the proposed observer, a new second-order sliding mode (SOSM) controller is constructed by using a novel sliding surface with unmatched disturbances compensation. The proposed control law is a simply continuous function of time and thus can certainly reduce numerical chattering. Finally, to show the effectiveness of the theoretical results, an application to inverted pendulum system is used to make simulation comparison.  相似文献   

15.
A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as “M-curve”. This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller’s effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.  相似文献   

16.
This paper proposes an nth-order suboptimal integral sliding mode controller for a class of nonlinear affine systems. First, a general form of integral sliding mode is given. An extended Theta-D method is developed for the optimal control problems characterized by a quadratic cost function with a cross term. Then the extended Theta-D method is employed to determine a suboptimal integral sliding mode. Rigorous proof shows that the controller guarantees semi-global asymptotical stability of affine systems. To verify the accuracy of the extended Theta-D method, a numerical example is provided. To verify the effectiveness of the proposed suboptimal integral sliding mode controller, a numerical example and an application example of an overhead crane system are provided.  相似文献   

17.
In this paper, the problem of finite-time chaos synchronization between two different chaotic systems with fully unknown parameters is investigated. First, a new nonsingular terminal sliding surface is introduced and its finite-time convergence to the zero equilibrium is proved. Then, appropriate adaptive laws are derived to tackle the unknown parameters of the systems. Afterwards, based on the adaptive laws and finite-time control idea, an adaptive sliding mode controller is proposed to ensure the occurrence of the sliding motion in a given finite time. It is mathematically proved that the introduced sliding mode technique has finite-time convergence and stability in both reaching and sliding mode phases. Finally, some numerical simulations are presented to demonstrate the applicability and effectiveness of the proposed technique.  相似文献   

18.
A novel type of control strategy combining the fractional calculus with terminal sliding mode control called fractional terminal sliding mode control is introduced for a class of dynamical systems subject to uncertainties. A fractional-order switching manifold is proposed and the corresponding control law is formulated based on the Lyapunov stability theory to guarantee the sliding condition. The proposed fractional-order terminal sliding mode controller ensures the finite time stability of the closed-loop system. Finally, numerical simulation results are presented and compared to illustrate the effectiveness of the proposed method.  相似文献   

19.
In this paper, an adaptive controller is designed to ensure robust synchronization of two different chaotic systems with input nonlinearities. For this purpose, a stable sliding surface is defined and an adaptive sliding mode controller is designed to achieve robust synchronization of the systems when the control input is influenced through nonlinearities produced by actuator or external uncertainty recourses. The adaptation law guarantees the synchronization assuming of unknown model uncertainty. Furthermore by adding an integrator and incorporating a saturation function in the control law, the chattering phenomenon caused by the sign function is avoided. The simulation results for synchronization of Chua’s circuit and Genesio systems show the efficiency of the proposed technique.  相似文献   

20.
司家芳  蒋威 《数学季刊》2012,(1):117-122
The problem of sliding mode control for fractional differential systems with statedelay is considered.A novel sliding surface is proposed and a controller is designed correspondingly,such that the state starting from any initial value will move toward the switching surface and reach the sliding surface in finite time and the state variables on the sliding surface will converge to equilibrium point.And the stability of the proposed control design is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号