首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoluminescence (PL) measurements were performed in order to investigate the carbon impurity effects on the intermixing behavior of GaAs/AlAs multiple quantum wells (MQWs) grown by molecular beam epitaxy. The GaAs/AlAs MQWs were annealed with a carbon source in a furnace annealing system. The PL spectra show that the magnitude of the intermixing of Al and Ga induced by thermal annealing in GaAs/AlAs MQWs increases with depth. The nonuniformity of the intermixing as a function of the depth originated from the carbon impurities which were injected during thermal treatment.  相似文献   

2.
Giant step structures consisting of coherently aligned multi-atomic steps were naturally formed during the molecular beam epitaxy growth of Al0.5Ga0.5As/GaAs superlattices (SLs) on vicinal (110)GaAs surfaces misoriented 6° toward (111)A. The growth of AlAs/AlxGa1−xAs/AlAs quantum wells (QWs) on the giant step structures realized Alx0Ga1−x0As (x0<x) quantum wires (QWRs). We studied the giant step structures and the QWRs by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). TEM observations revealed that the QWRs were formed at the step edges. The cross sections of the QWRs were as small as 10 nm×20 nm and the lateral distances between them were about 0.15 μm. We clarified the roles of the SLs to form the coherent giant step structures. From EDX analysis, it was estimated that the AlAs composition in the Al0.5Ga0.5As layers varied from 0.5 (terrace) to 0.41 (step edge). In the AlAs/AlxGa1−xAs/AlAs QWs, the AlAs compositional modulation and the confinement by the AlAs barriers led to the embedded Alx0Ga1−x0As regions. These results supported the existence of the Alx0Ga1−x0As QWRs on the giant step structures.  相似文献   

3.
为了实现Ⅲ-V器件在硅基平台上单片集成,近年来Ⅲ-V半导体在硅衬底上的异质外延得到了广泛研究。由于Ⅲ-V半导体与Si之间大的晶格失配以及晶格结构不同,在Si上生长的Ⅲ-V半导体中存在较多的失配位错及反相畴,对器件性能造成严重影响。而Si(111)表面的双原子台阶可以避免Ⅲ-V异质外延过程中形成反相畴。本文利用分子束外延技术通过Al/AlAs作为中间层首次在Si(111)衬底上外延生长了GaAs(111)薄膜。通过一系列对比实验验证了Al/AlAs中间层的插入对GaAs薄膜质量的调控作用,并在此基础上通过低温-高温两步法优化了GaAs的生长条件。结果表明Al/AlAs插层可以为GaAs外延生长提供模板,并在一定程度上释放GaAs与Si之间的失配应力,从而使GaAs薄膜的晶体质量得到提高。以上工作为Ⅲ-V半导体在硅上的生长提供了新思路。  相似文献   

4.
We developed a growth method for forming a GaAs quantum well contained in an AlGaAs/GaAs heterostructure nanowire using selective-area metal organic vapor phase epitaxy. To find the optimum growth condition of AlGaAs nanowires, we changed the growth temperature between 800 and 850 °C and found that best uniformity of the shape and the size was obtained near 800 °C but lateral growth of AlGaAs became larger, which resulted in a wide GaAs quantum well grown on the top (1 1 1)B facet of the AlGaAs nanowire. To form the GaAs quantum well with a reduced lateral size atop the AlGaAs nanowire, a GaAs core nanowire about 100 nm in diameter was grown before the AlGaAs growth, which reduced the lateral size of AlGaAs to roughly half compared with that without the GaAs core. Photoluminescence measurement at 4.2 K indicated spectral peaks of the GaAs quantum wells about 60 meV higher than the acceptor-related recombination emission peak of GaAs near 1.5 eV. The photoluminescence peak energy showed a blue shift of about 15 meV, from 1.546 to 1.560 eV, as the growth time of the GaAs quantum well was decreased from 8 to 3 s. Transmission electron microscopy and energy dispersive X-ray analysis of an AlGaAs/GaAs heterostructure nanowire indicated a GaAs quantum well with a thickness of 5−20 nm buried along the 〈1 1 1〉 direction between the AlGaAs shells, showing a successful fabrication of the GaAs quantum well.  相似文献   

5.
InGaAs/InAlAs in-plane superlattices (IPSLs) consisting of InAs/GaAs and InAs/AlAs monolayer superlattices grown on slightly misoriented (110)InP substrates by molecular beam epitaxy have been structurally evaluated by transmission electron microscopy. We used (110)InP 3° tilted toward the [00 ] direction. The ISPLs were fabricated by an alternative growth of half monolayers of AlAs and GaAs and one monolayer of InAs while maintaining regular arrays of one monolayer steps on the growth surface. In electron diffraction patterns from the ( 10) cross-section, two types of superstructure spots double-positioned in the 001 direction are observed, consistent with the existence of the IPSLs. Dark-field imaging from the superstructure spots reveal a periodic diffraction contrast with an average lateral periodicity of about 4 nm, i.e., one terrace width. However, meandering of the vertical interface and partial disordering in the IPSLs are often observed. From high resolution ( 10) cross-sectional TEM images, the presence of IPSLs was also confirmed with an atomic scale resolution, although their vertical interface are meandering. In electron diffraction patterns from the (110) plan-view, extra-spots similar to those observed in the ( 10) cross-section were seen. Dark-field images from the superstructure spots indicated that the IPSLs were formed almost exactly along the 110 direction, suggesting that the steps on the growth surface are very straight along the 110 direction.  相似文献   

6.
We have investigated the molecular beam epitaxial (MBE) growth mechanisms of nanometer scale GaAs ridge structures formed on patterned substrates and studied the way to control the widths of ridges and those of quantum wires grown on them. It is found that the width of the ridge structure decreases, as the growth temperature is reduced, reaching about 20 nm when grown below 580°C. The width of an AlAs ridge (10 nm at 570°C) is always found to be narrower than that of GaAs. A Monte Carlo simulation is performed to investigate the diffusion process of atoms in these ridge structures and indicates the important role of thermodynamical stability on the shape of a nanometer structure.  相似文献   

7.
Segregation processes entail severe deviations from the nominal composition profiles of heterostructures grown by molecular beam epitaxy for most semiconductor systems. It is, however, possible to compensate exactly these effects, as shown here for InGaAs/GaAs. The deposition of a one-monolayer-thick indium-rich prelayer of InGaAs (or of a sub-monolayer amount of InAs) prior to growth of InxGa1−xAs allows forming a perfectly abrupt InxGa1−xAs-on-GaAs interface. Thermal annealing can furthermore be performed at the GaAs-on-InGaAs inter face, so as to desorb surface indium atoms and suppress In incorporation in the GaAs overlayer. This powerful approach has been validated from a detailed study of the surface composition at various stages of the growth of InGaAs/GaAs quantum wells, as well as from high-resolution transmission electron microscopy and photoluminescence investigations.  相似文献   

8.
The surface reconstructions of AlAs(100) layers grown by molecular beam epitaxy (MBE) on GaAs(100) were mapped as a function of substrate temperature and arsenic flux. Three main reconstructions were observed - a c(4×4) at lower temperatures and higher arsenic fluxes, a (2×4) at middle temperatures, and a (3×2) at higher temperatures and lower arsenic fluxes. Growth of AlAs on AlAs(100) is layer-by-layer for the high temperature and low temperature reconstructions. In the mid-temperature region, AlAs grows rough on (2×4) reconstructed AlAs(100) as indicated by rapidly damped reflection high-energy electron diffraction (RHEED) intensity oscillations and the appearance of three-dimensional (3D) features. The addition of fractional layers of Ga enhances the smooth growth of AlAs. A metastable (5×2) reconstruction was observed when a fraction of a layer of Ga was present on the surface. The results indicate that Ga segregates during the growth of AlAs on GaAs(100) at temperatures at least as low as 500°C, and that annealing at temperatures above 700°C removes most of the Ga from the surface.  相似文献   

9.
We observed atomic structures of (411)A GaAs/AlAs hetero-interfaces using a transmission electron microscope, and studied the numerical computer simulations of the lattice images for the first time. The observed specimens were GaAs/AlAs multi-layer structures fabricated by molecular beam epitaxy, where the AlAs layers were very thin (0.75-2.1 monolayer). From the hetero-interfacial structures observed in cross-sectional view, it was found that the (411)A atomic step structures were based on Shimomura's model, which has already been proposed in a previous paper. We will discuss the concrete interfacial structure.  相似文献   

10.
Metal–organic vapor phase epitaxial growth of GaAsN quantum wells is monitored by in situ reflectance measurements. Correlation between the change in the reflectance intensity and nitrogen content of the quantum well is established. The reflectance as a function of time also reveals if there is deterioration of the crystalline quality during growth. This method together with X-ray diffraction and photoluminescence characterization is applied to analyze GaAsN growth using various reactor pressures and TBAs/III molar flow ratios.  相似文献   

11.
Effectively atomically flat interfaces over a macroscopic area (200 μm diameter) have been achieved in GaAs/Al0.7Ga0.3As quantum wells (QWs) with well widths of 3.6-12 nm grown on (411)A GaAs substrates by molecular beam epitaxy (MBE) for the first time. A single and very narrow photoluminescence peak (FWHM, full width at half maximum, is 6.1 meV) was observed at 717.4 nm for the QW with a well width of 3.6 nm at 4.2 K. The linewidth is comparable to that of growth-interrupted QWs grown on (100)-oriented GaAs substrates by MBE. A 1.5 μm thick Al0.7Ga0.3As layer with good surface morphology also could be grown on (411)A GaAs substrates in the entire growth temperature region of 580-700°C, while rough surfaces were observed in Al0.7Ga0.3As layers simultaneously grown on (100) GaAs substrates at 640-700°C. These results indicate that the surface of GaAs and Al0.7Ga0.3As grown on the (411)A GaAs substrates are extremely flat and stable on the (411)A plane.  相似文献   

12.
Top-emitting Alas/AlGaAs vertical cavity surface emitting lasers emitting at 765 nm with minimum threshold currents of 0.6 mA and threshold voltages of 1.9 V have been grown by MOVPE. In order to keep the growth time low, we investigated the possibility to grow these structures at growth rates of 5 μm/h. Special attention was paid to the homogeneity that can be achieved over a 2″ wafer under these growth conditions. Spatially resolved reflectivity measurements on GaAs/AlAs distributed Bragg reflectors showed, that the growth rate varies less than 0.3% in the center of the wafer and decreases by 1% at the wafer edge.  相似文献   

13.
CdTe/GaAs(001) heterostructures were fabricated by molecular beam epitaxy on chemically etched and thermally deoxidized GaAs(001) substrates, as well as GaAs(001) (3×1) buffer layers grown in situ by molecular beam epitaxy. Different growth protocols were also explored, leading to Te-induced (6×1) or (2×1) surface reconstructions during the early growth stage. High-resolution cross-sectional transmission electron microscopy was used to examine the final interface structure resulting from the different substrate preparations, and surface reconstructions. The (2×1) surface reconstruction led to pure (001) growth, while the (6×1) reconstruction led to an interface which included small (111)-oriented inclusions. In addition, deposition on etched and deoxidized GaAs(001) wafers led to preferential CdTe growth within etch pits and resulted in a macroscopically rough interface region.  相似文献   

14.
Dynamic optical reflectivity (DOR) uses the interference oscillations arising from the multiple reflections, of a normally incident CW laser beam, between the surface of a growing film and the film-substrate interface. The oscillations have a period determined by the refractive index of the film and the laser wavelength. DOR measurements have been made, in real time, during the CBE growth of AlxGa1−xAs layers on a GaAs(100) substrate. The results show that the growth rate and the aluminum composition x can be monitored.  相似文献   

15.
Two kinds of GaN samples were grown on GaAs(0 0 1) substrates. One is grown on nitridized GaAs surface, the other is grown on nitridized AlAs buffer GaAs substrate. X-ray diffraction and photoluminescence measurements find that the GaN sample directly grown on GaAs substrate is pure cubic phase and those grown on AlAs buffer is pure hexagonal phase. The present study shows that the phase of GaN samples grown on GaAs substrates can be controlled using different buffer layers.  相似文献   

16.
InGaN/GaN multiple quantum well structures emitting in the blue/green wavelength region were grown by metal organic vapor phase epitaxy. By reducing the quantum well growth time the influence of the quantum well thicknesses between 3.8 and 1.1 nm on the indium incorporation and the distribution of indium in the quantum wells in growth direction were investigated. X-ray diffraction measurements show that the average indium mole fraction in the quantum wells decreases with reducing quantum well width due to a delay in the indium incorporation at the barrier/well interface. Quantitative analysis reveals a segregation length of about 2 nm as a measure of the graded region in growth direction. Cathodoluminescence imaging reveals that the spatial variation of the wavelength is reduced with decreasing quantum well thickness down to 1.7 nm. Reducing the width of the quantum well further results in an increase of the spatial wavelength variation.  相似文献   

17.
We have investigated InAs quantum effect devices based on both antimonides and arsenides. In an InAs quantum point contact device based on antimonides (InAs/AlGaSb), we have successfully reduced the leakage currents and observed quantum effects at around 77 K by optimizing the heterostructure growth and mesa-etched split-gate approach. Strained InAs quantum dots based on arsenides (AlInAs/AlAs/InAs/InGaAs/AlInAs) were successfully fabricated by MBE growth and mesa-etching. Blue-shifted photoluminescence was obtained from millions of quantum dots with an average lateral size of approximately 2000 å square.  相似文献   

18.
The GaSb/InAs interface can be grown in two quite different ways either with In and Sb atoms forming the interface “InSb-like” or Ga and As atoms forming the interface “GaAs-like”. This is a result of both the Group III and Group V atoms changing at the interface. Different interfaces have been achieved in GaSb/InAs heterojunctions grown by atmospheric MOVPE using different gas switching sequences and the consequent changes in the electrical behaviour have been assessed using low field magnetotransport measurements. The results range from very poor (“GaAs-like”) to excellent (a particular “InSb-like”) interface. A further comparison is made to a previously used growth sequence for these structures. The effect of pauses during the interface sequence has also been investigated.  相似文献   

19.
Thin graded hetero-epitaxial AlGaAs layer has been grown from the undersaturated Liquid Phase Epitaxial (LPE) technique. The grown layers have been characterized using Laser Raman scattering studies. The peak position and intensity ratio of GaAs and AlAs like LO phonon frequencies have been measured and compared with conventional LPE grown AlGaAs epitaxial layer. The behaviour of GaAs and AlAs like LO phonons has been found to vary with the aluminum composition in the grown layer. Raman peak positions have been observed to shift to lower wavenumber in GaAs like LO phonon and higher wavenumber side of AlAs like LO phonon. Aluminum free features have been noticed in IEE grown AlGaAs (x > 0.8) hetero epitaxial layers.  相似文献   

20.
In this paper, we present the results of structural and photoluminescence (PL) studies on vertically aligned, 20-period In0.33Ga0.67As/GaAs quantum dot stacks, grown by molecular beam epitaxy (MBE). Two different In0.33Ga0.67As/GaAs quantum dot stacks were compared. In one case, the In0.33Ga0.67As layer thickness was chosen to be just above its transition thickness, and in the other case, the In0.33Ga0.67As layer thickness was chosen to be 30% larger than its transition thickness. The 2D–3D growth mode transition time was determined using reflection high-energy electron diffraction (RHEED). Structural studies were done on these samples using high-resolution X-ray diffraction (HRXRD) and cross-sectional transmission electron microscopy (XTEM). A careful analysis showed that the satellite peaks recorded in X-ray rocking curve show two types of periodicities in one sample. We attribute this additional periodicity to the presence of an aligned vertical stack of quantum dots. We also show that the additional periodicity is not significant in a sample in which the quantum dots are not prominently formed. By analyzing the X-ray rocking curve in conjunction with RHEED and PL, we have estimated the structural parameters of the quantum dot stack. These parameters agree well with those obtained from XTEM measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号