首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Phase diagrams for the Sc2S3-Ln2S3 (Ln = Dy, Er, or Tm) systems were designed in the range from 1000 K to melting temperatures. The Ln3ScS6 compounds that are formed in these systems crystallize in monoclinic space group P21/m, and melt congruently: for Dy3ScS6, a = 1.118 nm, b = 1.262 nm, c = 0.354 nm, β = 94.7°, 1800 K, H = 2600 MPa; for Er3ScS6, a = 1.113 nm, b = 1.258 nm, c = 0.353 nm, β = 94.5°, 1830 K, H = 2800 MPa; for Tm3ScS6, a = 1.112 nm, b = 1.229 nm, c = 0.352 nm, β = 94.3°, 1835 K, H = 2940 MPa. The LnScS3 (Ln = Dy or Er) complex sulfides, with orthorhombic structures, space group Pnma, melt incongruently: for DyScS3, a = 0.700 nm, b = 0.637 nm, c = 0.943 nm, 1810 K, H = 3800 MPa; and for ErScS3, a = 0.697 nm, b = 0.633 nm, c = 0.942 nm, 1800 K, H = 3800 MPa. As the ionic radii rLn3+ and rSc3+ approach Ln Sc to each other in the row Dy-Er-Tm, the solubility in Sc2S3 increases, at 1670 K being equal to 13 mol % Dy2S3, 30 mol % Er2S3, and 40 mol % Tm2S3. LnScS3 (Ln = Dy or Er) forms a two-sided homogeneity region, at 1670 K lying in ranges of 43–56 mol % Ln2S3. The eutectic temperatures and compositions are as follows: 1700 K and 66 mol % Dy2S3, 1730 K and 81 mol % Dy2S3, 1740 K and 65 mol % Er2S3, 1700 K and 83 mol % Er2S3, 1730 K and 70 mol % Tm2S3, and 1755 K and 84 mol % Tm2S3.  相似文献   

2.
Phase diagrams have been designed for the systems Sc2S3-Ln2S3 where Ln = La, Nd, or Gd. In these systems, complex sulfides crystallize in orthorhombic space group Pnma. The sulfides melt congruently and have the following parameters; for LaScS3, a = 0.718 nm, b = 0.654 nm, c = 0.960 nm, 2000 K, 3200 MPa; for NdScS3, a = 0.712 nm, b = 0.646 nm, c = 0.952 nm, 1960 K, 3500 MPa; and for GdScS3, a = 0.704 nm, b = 0.640 nm, c = 0.946 nm, 1900 K, 3400 MPa. The extents of the solid solutions based on the existing phases increase as the effective ion radii of Ln3+ approaches that of Sc3+. At 1670 K, the LnScS3 homogeneity region is 48–52 mol % Nd2S3 and 46–54 mol % Gd2S3. Sc2S3 dissolves 3 mol % Nd2S3 and 6 mol % Gd2S3. γ-Nd2S3 dissolves 2 mol % Sc2S3, and γ-Gd2S3 dissolves 4 mol % Sc2S3. The subsystems Sc2S3-LnScS3 and LnScS3-Ln2S3 are of the eutectic type. The eutectic coordinates are, respectively, 27 mol % La2S3, 1880 K; 75 mol % La2S3, 1800 K; 30 mol % Nd2S3, 1850 K; 74 mol % Nd2S3, 1770 K; 33 mol % Gd2S3, 1800 K; and 74 mol % Gd2S3, 1730 K.  相似文献   

3.
The phase diagrams of the Ln2S3-EuS (Ln = La-Gd) systems were studied. In these systems, continuous series of solid solutions form between γ-Ln2S3 and EuLn2S4 (Th3P4 structural type), and also eutectics between EuLa2S4 and a solid solution based on EuS form at the following coordinates: 71.5 mol % EuS, 2280 K; 66.5 mol % EuS, 2240 K; and 63.5 mol % EuS, 2100 K. The characteristics of the forming compounds are the following: EuLa2S4: a = 0.8759 nm, T melt = 2420 K, and H = 2380 MPa; EuNd2S4: a = 0.8615 nm, T melt = 2380 K, and H = 2530 MPa; and EuGd2S4: a = 0.8507 nm, T melt = 2300 K, and H = 2670 MPa.  相似文献   

4.
Complex sulfides with the SrS: Ln2S3 ratio equal to 3: 1, 1: 3, or 1: 4 for Ln = Y or Lu have been predicted on the basis of thermodynamic analysis of previously designed SrS-Ln2S3 (Ln = Tb, Dy, or Er) phase diagrams. Phase diagrams for the SrS-Ln2S3 (Ln = Tm, Lu, or Sc) systems have been designed for the first time. These systems form congruently melting compounds SrLn2S4 (CaFe2O4 type structure, orthorhombic crystal system). Unit cell parameters, heats of melting, and microhardnesses have been determined. For SrTm2S4, the respective values are as follows: a = 1.181 nm, b = 1.421 nm, c = 0.396 nm, 2040 K, ΔH m = 188 kJ/mol, 3500 MPa; for SrLu2S4: a = 1.187 nm, b = 1.416 nm, c = 0.392 nm, 2070 K, ΔH m = 190 kJ/mol, 3540 MPa; and for SrSc2S4: a = 1.180 nm, b = 1.410 nm, c = 0.390 nm, 2100 K, ΔH m = 206 kJ/mol, 3650 MPa. The increase in the melting temperatures and the heats of melting calculated for the SrLn2S4 compounds correlate with their classification as thio salts.  相似文献   

5.
Phase equilibria in the BaS-Cu2S-Gd2S3 system have been studied along the 800 K isothermal section and the CuGdS2-BaS, Cu2S-BaGdCuS3, BaGdCuS3-Gd2S3, and BaGdCuS3-BaGd2S4 polythermal sections. Complex sulfide BaGdCuS3 is formed in the title system; it has an orthorhombic KZrCuSe3-type structure (space group Cmcm) with the unit cell parameters equal to a = 0.40529(2) nm, b = 1.34831(6) nm, c = 1.02940(5) nm. This sulfide melts congruently at 1685 K. BaGdCuS3 is in equilibrium with sulfides Cu2S, BaS, Gd2S3, CuGdS2, BaGd2S4, BaCu4S3, and BaCu2S2 and with compositions in the C0 solid-solution region of the Cu2S-Gd2S3 system. Eutectics are formed between compounds CuGdS2 and BaGdCuS3 at 7.0 mol % BaS and T = 1325 K, between BaGdCuS3 and BaS at 64.0 mol % BaS and T = 1625 K, between Cu2S and BaGdCuS3 at 8.0 mol % BaGdCuS3 and T = 1125 K, between Gd2S3 and BaGdCuS3 at 64.0 mol % Gd2S3 and 1495 K, and between BaGdCuS3 and BaGd2S4 at 35 mol % BaGd2S4 and T = 1660 K.  相似文献   

6.
Phase equilibria in the systems SrS-Cu2S-Ln2S3 (Ln = La or Nd) have been studied along the isothermal section at 1050 K and vertical sections CuLnS2-SrS and Cu2S-SrLnCuS3, which are partially quasibinary joins. Compounds SrLnCuS3 with Ln = La or Nd have been synthesized for the first time. They crystallize in orthorhombic space group Pnma, the BaLaCuS3 structure type, with the following unit cell parameters: for SrLaCuS3, a = 1.1157(2) nm, b = 0.41003(6) nm, c = 1.1545(2) nm; for SrNdCuS3, a = 1.1083(1) nm, b = 0.40887(7) nm, c = 1.1477(2) nm. Noticeable homogeneity regions for SrLnCuS3 are not found. The compounds melt congruently by the reaction SrLnCuS3 ? SrS + L at 1365 K for SrLaCuS3 and 1400 K for SrNdCuS3. The tie-lines at 1050 K in the systems SrS-Cu2S-Ln2S3 radiate from SrLnCuS3 toward phases SrS, Cu2S, CuLnS2, and SrLn2S4, lying between the phases CuLnS2 and compositions from the γ-Ln2S3-SrLn2S4 solid-solution field. Eutectics are formed between the compounds CuLaS2 and SrLaCuS3 at 21.0 mol % SrS, T = 1345 K; between the compounds CuNdS2 and SrNdCuS3 at 31.0 mol % SrS, T = 1310 K; and between the phases Cu2S and SrLnCuS3 at 14.0 mol % SrLaCuS3, T = 1075 K and 8.0 mol % SrNdCuS3, T = 1055 K.  相似文献   

7.
The MgGa2S4 phase, which forms in the MgS-Ga2S3 system, crystallizes in monoclinic system with the parameters a = 1.275 nm, b = 2.255 nm, c = 0.641 nm, β = 108.8°. Its congruent melting temperature is 1365 K. The eutectics have compositions of 31 and 62 mol % Ga2S3 and melt at 1280 and 1140 K, respectively. The MgS solubility in γ-Ga2S3 at 1070 K reaches 7 mol % MgS.  相似文献   

8.
In the BaS–Ga2S3 system, the following compounds form: congruently melting compound BaGa4S7 (rhombic system, space group Pmn21, a = 1.477 nm, b = 0.624 nm, c = 0.593 nm, and Tmelt = 1490 K) and incongruently melting compounds BaGa2S4 (cubic system, space group Pa3, a = 1.2661 nm, and Tmelt = 1370 K), Ba2Ga2S5 (monoclinic system, space group C2/c, a = 1.529, b = 1.479, c = 0.858 nm, ß = 106.04°, and Tmelt = 1150 K), Ba3Ga2S6 (monoclinic system, space group C2/c, a = 0.909 nm, b = 1.448 nm, c = 0.903 nm, ß = 91.81°, and Tmelt = 1190 K), Ba4Ga2S7 (monoclinic system, space group P21/m, a = 1.177 nm, b = 0.716 nm, c = 0.903 nm, ß = 108.32°, and Tmelt = 1230 K), and Ba5Ga2S8 (rhombic system, space group Cmca, a = 2.249 nm, b = 1.215 nm, c = 1.189 nm, and Tmelt = 1480 K). The compositions of eutectics are 38 and 72 mol % Ga2S3, and their melting points are 1120 and 1160 K, respectively. The BaS solubility in γ-Ga2S3 at 1070 K reaches 3 mol %.  相似文献   

9.
The Sm2S3-Sm2O3 phase diagram was studied by physicochemical methods of analysis from 800 K up to melting. Two oxysulfides are formed in the system: Sm10S14O with tetragonal crystal structure (space group I41/acd; unit cell parameters: a = 1.4860 nm, c = 1.9740 nm; microhardness: H = 4700 MPa; solid decomposition temperature: 1500 K) and Sm2O2S with hexagonal structure (space group P-3m1; a = 0.3893 nm, c = 0.6717 nm; H = 4500 MPa; congruent melting temperature: 2370 K). Within the extent of the Sm2O2S-based solid solution (61–70 mol % Sm2O3) at 1070 K, a singular point appears at the compound composition on property-composition curves. The eutectic coordinates: 23 mol % Sm2O3 and 1850 K; 80 mol % Sm2O3 and 2290 K.  相似文献   

10.
《Solid State Sciences》2001,3(4):513-518
Single crystals of Cs3Ln7Te12 (Ln = Sm, Gd, Tb) have been grown accidentally through the reaction of Ln and Te with a CsCl or Cs2Te3 flux at elevated temperatures. The crystal structures have been determined from single crystal X-ray diffraction data. These compounds, which are isostructural with Rb3Yb7Se12, crystallize in space group Pnnm of the orthorhombic system with two molecules in the following cells: Cs3Sm7Te12, a=13.750(6), b=28.332(7), c=4.473(3) Å, T=293 K; Cs3Gd7Te12, a=13.6064(13), b=28.209(3), c=4.4324(4) Å, T=153 K; Cs3Tb7Te12, a=13.5708(16), b=28.116(3), c=4.4147(5) Å, T=153 K.  相似文献   

11.
In the SrS-Ga2S3 system, there exist two individual compounds: SrGa2S4 (a = 2.084 nm, b = 2.050 nm, c = 1.220 nm; congruent melting at 1530 K) and Sr2Ga2S5 (a = 1.253 nm, b = 1.203 nm, c = 1.117 nm; peritectic melting at 1330 K); both are orthorhombic. We discovered a compound of composition Sr4Ga2S7; this compound crystallizes in cubic system with the unit cell parameter a = 0.6008 nm, space group Pa3, and decomposes by a solid-phase reaction at 870 K. Eutectic compositions are 42 and 73 mol % Ga2S3; eutectic melting temperatures are 1210 and 1170 K, respectively. The SrS solubility in γ-Ga2S3 at 1070 K reaches 4 mol %.  相似文献   

12.
A T-x diagram is designed for the Yb2S3-In2S3 system using physicochemical methods. A complex chemical reaction occurs in the system to yield ternary compounds Yb3InS6 (S1), YbInS3 (S2), Yb3In5S12 (S3), and YbIn3S6 (S4). In2S3-based limited solid solutions are found. Phases S1, S3, and S4 are formed by peritectic reactions at 1260, 1200, and 1100 K, respectively. Compound S2 melts congruently at 1390 K. Compound S3 crystallizes in monoclinic system (a = 10.90 Å, b = 21.01 Å, c = 3.846 Å, β = 96.2°). Compounds S1 and S4 crystallize in orthorhombic system (for S1, a = 16.76 Å, b = 13.70 Å, c = 3.88 Å; for S4, a = 3.86 Å, b = 11.64 Å, c = 20.98 Å, d exp = 4.62 g/cm3). Compound S2 crystallizes in cubic system (a = 10.68 Å).  相似文献   

13.
The phase diagram of system DyCuS2–EuS has been first constructed, and the phase equilibria in the Cu2S–Dy2S3–EuS triangle at 970 K have been studied. Compound EuDyCuS3 (1DyCuS2 : 1EuS), space group Pnma, a = 10.1901(3) Å, b = 3.9270(1) Å, c = 12.8468(3) Å, melts incongruently at 1727 ± 7 K according to the reaction: EuDyCuS3solid ? 0.17 SS EuS (90 mol % EuS, 10 mol % DyCuS2) + 0.83 liq (42 mol % EuS, 58 mol % DyCuS2), ΔH = 2.9 ± 0.6 kJ/mol; microhardness of the phase is 3080 ± 35 MPa. Compound EuDyCuS3 is transparent in the range 3000–1800 cm–1. In system DyCuS2–EuS, the solid solution (SS) based on EuS extends from 91 to 100 mol % at 1770 K and from 92 to 100 mol % at 1170 K. In γ-DyCuS2, 2 mol % EuS dissolves at 1487 K. The eutectic is formed between compounds DyCuS2 and EuDyCuS3 at 12 mol % EuS, T = 1487 ± 8 K. In system Cu2S?Dy2S3?EuS, 10 secondary systems have been isolated. At 970 K, tie-lines are located between compound EuDyCuS3 and solid solutions based on compounds β-Cu2S, EuS, DyCuS2, β-(DyCu3S3), and EuDy2S4; between DyCuS2 and the solid solution of α-Dy2S3, DyCuS2, and EuDy2S4.  相似文献   

14.
The MnS-La2S3 phase diagram has been constructed where the incongruently melting compound Mn2La6S11 is formed. Complex sulfide Mn2La6S11 is characterized by monoclinic structure; its incongruent melting temperature is 1535 K. Eutectic coordinates are 31 mol % La2S3, 1490 K. The extent of the ??-La2S3 based solid solutions at 1570 K is 8 mol % MnS; at 770 K, ??-La2S3 dissolves 3 mol % MnS. The MnS-Gd2S3 system is a eutectic with limited solid solutions. Eutectic coordinates are 35.5 mol % Gd2S3, 1640 K. Solubility in ??-Gd2S3 is 28 mol % MnS at 1570 K, in ??-Gd2S3 is 13 mol % MnS at 1170 K, and in MnS is 1 mol % Gd2S3. Thermochemical equations have been composed for eutectic and eutectoid phase transformations. A MnS-Nd2S3 phase diagram has been predicted.  相似文献   

15.
Phase equilibria in the EuS-Cu2S-Nd2S3 system were studied in an isothermal (970 K) section and NdCuS2-EuS and Cu2S-EuNdCuS3 polythermal sections. The complex sulfide EuNdCuS3 has an orthorhombic crystal lattice (space group Pnma; a = 1.10438(2) nm, b = 0.40660(1) nm, c = 1.14149(4) nm), is isostructural to BaLaCuS3, and melts incongruently at 1470 K: EuNdCuS3 (0.50 EuS; 0.50 NdCuS2) ai 0.18 EuS ss (0.88 EuS; 0.12 NdCuS2) + 0.82 L (0.415 EuS; 0.585 NdCuS2); ΔH = 17.8 kJ/mol. Within the range 0.5 mol % EuS, EuNdCuS3-based solid solutions were not found. At 970 K, the tie lines pass from the compound EuNdCuS3 to Cu2S, EuS, NdCuS2, and EuNd2S4 phases and lie between the NdCuS2 phase and solid solutions (ss) of γ-Nd2S3 with EuNd2S4. Eutectics are formed between the compounds NdCuS2 and EuNdCuS3 at 32.0 mol % EuS T = 1318 K and between the compounds Cu2S and EuNdCuS3 at 20.5 mol % EuNdCuS3 and T = 1142 K. Five main subordinate triangles were identified in the system.  相似文献   

16.
The multicolor Gd2O2S:xTb3+, yEu3+ hollow spheres were successfully synthesized via a template-free solvothermal route without the use of surfactant from commercially available Ln (NO3)3·6H2O (Ln = Gd, Tb and Eu), absolute ethanol, ethanediamine and sublimed sulfur as the starting materials. The phase, structure, particle morphology and photoluminescence (PL) properties of the as-obtained products were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and photoluminescence spectra. The influence of synthetic time on phase, structure and morphology was systematically investigated and discussed. The possible formation mechanism depending on synthetic time t for the Gd2O2S phase has been presented. These results demonstrate that the Gd2O2S hollow spheres could be obtained under optimal condition, namely solvothermal temperature T = 220 °C and synthetic time t = 16 h. The as-obtained Gd2O2S sample possesses hollow sphere structure, which has a typical size of about 2.5 μm in diameter and about 0.5 μm in shell thickness. PL spectroscopy reveals that the strongest emission peak for the Gd2O2S:xTb3+ and the Gd2O2S:yEu3+ samples is located at 545 nm and 628 nm, corresponding to 5D47F5 transitions of Tb3+ ions and 5D07F2 transitions of Eu3+ ions, respectively. The quenching concentration of Tb3+ ions and Eu3+ ions is 7%. In the case of Tb3+ and Eu3+ co-doped samples, when the concentration of Tb3+ or Eu3+ ions is 7%, the optimum concentration of Eu3+ or Tb3+ ions is determined to be 1%. Under 254 nm ultraviolet (UV) light excitation, the Gd2O2S:7%Tb3+, the Gd2O2S:7%Tb3+,1%Eu3+ and the Gd2O2S:7%Eu3+ samples give green, yellow and red light emissions, respectively. And the corresponding CIE coordinates vary from (0.3513, 0.5615), (0.4120, 0.4588) to (0.5868, 0.3023), which is also well consistent with their luminous photographs.  相似文献   

17.
Four definite compounds exist in the Sm2O3Ga2O3 binary phase diagram, namely: Sm3GaO6, Sm4Ga2O9, SmGaO3, and Sm3Ga5O12. The 31 compound is orthorhombic (space group Pnna - Z.4) with the cell parameters: a = 11.400Å, b = 5.515Å, c = 9.07Å and belongs to the oxysel family. Sm3GaO6 and SmGaO3 melt incongruently at 1715 and 1565°C; Sm4Ga2O9 and Sm3Ga5O12 have a congruent melting point at 1710 and 1655°C. With regard to the Gd2O3Ga2O3 system three definite compounds have been identified: Gd3GaO6, Gd4Ga2O9, and Gd3Ga5O12. Only the garnet melts congruently at 1740°C with the following composition: Gd3.12Ga4.88O12. Gd3GaO6, and Gd4Ga2O9 melt incongruently at 1760 and 1700°C. GdGaO3 is only obtained by melt overheating which may yield an equilibrium or a metastable phase diagram.  相似文献   

18.
K3[DyIII(nta)2(H2O)]·5H2O and (NH4)3[DyIII(nta)2] have been synthesized in aqueous solution and characterized by IR, elemental analysis and single-crystal X-ray diffraction techniques. In K3[DyIII(nta)2(H2O)]·5H2O the DyIII ion is nine coordinated yielding a tricapped trigonal prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 15.373(5) Å, b = 12.896(4) Å, c = 26.202(9) Å; β = 96.122(5)°, V = 5165(3) Å3, Z = 8, D c = 1.965 g·cm?3, μ = 3.458 mm?1, F(000) = 3016, R 1 = 0.0452 and wR 2 = 0.1025 for 4550 observed reflections with I ≥ 2σ(I). In (NH4)3[DyIII(nta)2] the DyIII ion is eight coordinated yielding a usual dicapped trigonal anti-prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 13.736(3) Å, b = 7.9389(16) Å, c = 18.781(4) Å; β = 104.099(3)°, V = 1986.3(7) Å3, Z = 2, D c = 1.983 g·cm?3, μ = 3.834 mm?1, F(000) = 1172, R 1 = 0.0208 and wR 2 = 0.0500 for 2022 observed reflections with I ≥ 2σ(I). The results indicate that the difference in counter ion also influences coordination numbers and structures of rare earth metal complexes with aminopolycarboxylic acid ligands.  相似文献   

19.
Double‐decker complexes of lanthanide cations can be readily prepared with tetraazaporphyrins (porphyrazines). We have synthesized and characterized a series of neutral double‐decker complexes [Ln(OETAP)2] (Ln=Tb3+, Dy3+, Gd3+, Y3+; OETAP=octa(ethyl)tetraazaporphyrin). Some of these complexes show analogous magnetic features to their phthalocyanine (Pc) counterparts. The Tb3+ and Dy3+ derivatives exhibit single‐molecule magnet (SMM) behavior with high blocking temperatures over 50 and 10 K, respectively. These results confirm that, in double‐decker complexes that involve Tb or Dy, the (N4)2 square antiprism coordination mode has an important role in inducing very large activation energies for magnetization reversal. In contrast with their Pc counterparts, the use of tetraazaporphyrin ligands endows the presented [Ln(OETAP)2] complexes with extraordinary chemical versatility. The double‐decker complexes that exhibit SMM behavior are highly soluble in common organic solvents, and easily processable even through sublimation.  相似文献   

20.
A new 1:2 ordered perovskite La(Li1/3Ti2/3)O3 has been synthesized via solid-state techniques. At temperature >1185°C, Li and Ti are randomly distributed on the B-sites and the X-ray powder patterns can be indexed in a tilted (bbc+) Pbnm orthorhombic cell (a=ac√2=5.545 Å, b=ac√2=5.561 Å, c=2ac=7.835 Å). However, for T?1175°C, a 1:2 layered ordering of Li and Ti along 〈111〉c yields a structure with a P21/c monoclinic cell with a=ac√6=9.604 Å, b=ac√2=5.552 Å, c=ac3√2=16.661 Å, β=125.12°. While this type of order is well known in the A2+(B2+1/3B5+2/3)O3 family of niobates and tantalates, La(Li1/3Ti2/3)O3 is the first example of a titanate perovskite with a 1:2 ordering of cations on the B-sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号