首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature-sensitive ionic hydrogels based on N-t-butylacrylamide (TBA), acrylamide (AAm), 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS) and N,N-methylenebis(acrylamide) (BAAm) monomers were prepared. The molar ratio of TBA to the monomers AAm and AMPS was fixed at 60/40, while the AMPS content of the hydrogels was varied. The elastic modulus of the hydrogels was in the range of 347-447 Pa, much lower than the modulus of PAAm or poly(N-isopropylacrylamide) hydrogels due to the reduced crosslinking efficiency of BAAm in TBA/AAm copolymerization. The hydrogels exhibited swelling-deswelling transition in water depending on the temperature. Increasing ionic group (AMPS) content resulted in shifting of the transition temperature interval in which the deswelling takes place. The higher the ionic group content, the broader the temperature interval at the phase transition. Ionic hydrogels exhibited first-order reentrant conformational transitions in ethanol-water and in dimethylsulfoxide (DMSO)-water mixtures. The higher the ionic group content of the hydrogels the narrower the ethanol (or DMSO) range in which the reentrant phenomena occur. By taking into account the difference of the solvent mixture composition inside and outside the gel, the equilibrium swelling theory provided a satisfactory agreement to the experimental swelling data of the hydrogels immersed in the solvent mixtures.  相似文献   

2.
Block and graft copolymers with poly(N-isopropylacrylamide) and poly[(N-acetylimino)ethylene] (PNAI) sequences were synthesized via PNAI derivatives (macroinitiators or macromers). The polymerization yields for block copolymers synthesized in ethanol, using the PNAI macroinitiator, were low (<10%), except where photochemical polymerization was applied. By contrast, for the copolymerizations of N-isopropylacrylamide with the PNAI macromers, performed in alcoholic solution, quite high polymerization yields, around 80-90%, were reached. 1H-NMR and IR spectral and differential scanning calorimeter thermal data confirmed the copolymer formation. Thermosensitivity of the copolymers was investigated by means of turbidimetric technique as a function of their nature, average molecular weight and composition. It was found that the length of the chain of the PNAI macromer and the content in hydrophilic PNAI units of the resulted copolymer affected this behavior.  相似文献   

3.
A new kind of the thermo-sensitive and fluorescent complex of poly(N-isopropylacrylamide) (PNIPAM) and Tb(III) was synthesized by free radical polymerization, in which PNIPAM was used as a polymer ligand. The complex was characterized by using X-ray photoelectron spectroscopy (XPS), ultraviolet-visual (UV), Fourier transform infrared (FT-IR) and fluorescence spectroscopy. The results from the experiments indicated that there is a strong interaction between PNIPAM and Tb(III), leading to a decrease in the electron density of nitrogen and oxygen atoms and an increase in the electron density of Tb(III) in the PNIPAM containing Tb(III) by contrast with PNIPAM and Tb(III), respectively, meanwhile, exhibiting that the Tb(III) is mainly bonded to oxygen atoms in the polymer chain of PNIPAM and formed the complex of PNIPAM-Tb(III). After forming the PNIPAM-Tb(III) complex, the emission fluorescence intensity of Tb(III) in the PNIPAM-Tb(III) complex is significantly enhanced because the effective intramolecular energy transfer from PNIPAM to Tb(III). Especially, the emission intensity of the fluorescence peak at 547 nm can be increased as high as 145 times comparing with that of the pure Tb(III). The intramolecular energy transfer efficiency for fluorescence peak at 547 nm can reach as high as 68%. The fluorescence intensity is related the weight ratio of Tb(III) and PNIPAM in the PNIPAM-Tb(III) complex. When the weight ratio is 1.4%, the maximum fluorescence enhancement can be obtained. Nevertheless, the lower critical solution temperature of PNIPAM containing a low content of Tb(III) has not obviously changed after the formation of the complex of PNIPAM-Tb(III) by the interaction between PNIPAM and Tb(III). This novel thermosensitive and fluorescence characterization of the PNIPAM-Tb(III) complex may be useful in the fluorescence systems and the biomedical field.  相似文献   

4.
Thermosensitive N-isopropylacrylamide (NIPA) hydrogels were synthesized by a free radical copolymerization with N,N′-methylenebisacrylamide (MBAA) in four solvents: water, ethanol, acetone and N,N-dimethylformamide. The swelling and elastic properties of the hydrogels were affected by the synthesis-solvents; the hydrogels (e.g. NIPA/MBAA = 1000/50 mol/m3-pre-gel solution) synthesized in water have smaller swelling volume and larger shear modulus at 10 °C than those synthesized in amphiphilic solvents. The network structure of hydrogels was estimated in terms of the conversion and two sorts of effective crosslinking density based on the Flory theory and the concentration of crosslinker. The hydrogels synthesized in water can have the microscopic inhomogeneous network arising from the entanglement of polymer chains, while the hydrogels synthesized in amphiphilic solvents can have the homogeneous network arising from the polymer concentration lower than the pre-gel solution and can be similar in network structure to the lightly crosslinked hydrogel synthesized in water.  相似文献   

5.
The paper describes the preparation and characterization of cross-linked homopolymers and copolymers of N-isopropyl acrylamide (NIPAAm) with poly(ethylene glycol) methacrylate (PEGMA, Mn = 526 g/mol). Several copolymer samples were prepared by taking varying amounts of monomers i.e. NIPAAm and PEGMA in the initial feed using hydrophilic (IRGACURE-2959) and hydrophobic (DURACURE-1173) photoinitiator. In order to investigate the effect of reaction conditions, copolymers were prepared below or above the lower critical solution temperature (LCST) using water or water:ethanol (50:50) as solvent and by varying the amounts of cross-linker. Hydrogels prepared under varying reaction conditions were characterized for its swelling behaviour (using optical microscope), phase transition temperature (using DSC) and morphology (using SEM). As expected LCST increased from 35 to 39 °C as PEGMA content in copolymers increased from 1 to 20% (w/w). However, the morphology of hydrogels was found to be independent on the reaction conditions.Copolymer films having an optimum combination of swelling and performance properties were evaluated as switchable cell culture membranes. Hepatic cancer cell lines (Hep G-2) was used to study the cell growth and detachment. Cell growth and detachment were found to be dependent on the copolymer composition. Cell viability was found comparable to trypsin which also supports application of these films as cell culture membrane.  相似文献   

6.
Fast responsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogels with improved properties were prepared in phenol aqueous solutions with different concentrations. Due to the expanded network structure in water, the resulted hydrogels are capable of absorbing a large amount of water, i.e. exhibits a much increased swelling ratio at room temperature. Importantly, the hydrogels demonstrated much faster response rate than that of traditional PNIPAAm hydrogel upon external temperature increase.  相似文献   

7.
Physically crosslinked complexes of polyvinyl pyrrolidinone-poly (N-isopropylacrylamide) (PVP-PNIPAAm) were prepared by photopolymerisation from a mixture of the monomers 1-vinyl-2-pyrrolidinone and N-isopropylacrylamide. IR spectroscopy and calorimetry were used to characterise the resulting xerogels. By alternating the monomer feed ratio, copolymers were synthesised to have their own distinctive lower critical solution temperature (LCST). The transition temperature of the gels was established using cloud point measurement and modulated differential scanning calorimeter (MDSC). This ability to shift the phase transition temperature of the copolymers provides excellent flexibility in tailoring transitions for specific uses. Swelling experiments were performed on the copolymer disks in distilled water at varying temperatures to establish the behaviour of the gels above and below phase transition temperature. The results obtained show that below transition temperature, the gels are water soluble but above this temperature they are slightly less water soluble; significantly less water soluble; or water insoluble; depending on the composition and LCST of the gel.  相似文献   

8.
Based on the synthesis of poly(N-isopropylacrylamide-co-styrene) P(NIPAM-co-St) and poly(N-isopropylacrylamide) (PNIPAM) grafted P(NIPAM-co-St) core-shell nanoparticle, a new kind of thermoresponsive and fluorescent complex of Tb(III) and PNIPAM-g-P(NIPAM-co-St) (PNNS) was successfully prepared. The PNNS-Tb(III) complex was characterized with the different techniques. It was found that when PNNS with the core-shell structure interact with Tb(III), Tb(III) mainly bonded to O of the carbonyl groups of PNNS, forming the novel PNNS-Tb(III) complex. After forming the complex, the emission fluorescence intensity of Tb(III) in the complex is significantly enhanced. Especially, the maximum emission intensity of the PNNS-Tb(III) complex at 545 nm is enhanced about 223 times comparing to that of the pure Tb(III) because the effective intramolecular energy transfer from PNNS to Tb(III). The intramolecular energy transfer efficiency from PNNS to Tb(III) reaches 50%. The fluorescence intensity is related the weight ratio of Tb(III) and PNNS in the PNNS-Tb(III) complex. When the weight ratio of Tb(III) and the PNNS is 12 wt%, the enhancement of the emission fluorescence intensity at 545 nm is highest. This novel fluorescence characterization of the PNNS-Tb(III) complex may be useful in the fluorescence systems and the biomedical field.  相似文献   

9.
An asymmetric linear-dendritic block copolymer of polyether dendrimer and poly(N-isopropylacrylamide) was prepared by an atom transfer radical polymerization method. The self-assembly behavior and thermosensitive property of this copolymer in water were studied by dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence probe spectroscopy. It was found that the thermosensitive phase transition takes place at the temperature of 37.5 °C; simultaneously the spherical aggregates grow into larger entangled nanotubules. The unique temperature-sensitive supramolecular aggregates may make them especially useful as intelligent capsules for drug delivery systems and as chemical sensors.  相似文献   

10.
Poly(N-isopropylacrylamide)-grafted polymer monolith has been achieved using a surface-initiated atom transfer radical polymerization grafting polymerization within the pores of poly(chloromethylstyrene-divinylbenzene) macroporous monolith contained in a 100 mm × 4.6 mm I.D. stainless steel column. The grafted-poly(N-isopropylacrylamide) on the surface of the grafted monolith that was used as chromatographic stationary phase showed a response to the variation of temperatures and/or salt concentrations. This study focus on its salt concentration responsive property and it has been revealed that the hydrophobicity of the grafted monolith can be adjusted by changing salt concentrations in the range of 0.05-2.0 mol/L. A variety of salts including sodium sulfate, ammonium sulfate and sodium chloride exhibited different effects on the alteration of hydrophobicity of the grafted monolith, and the effect of the salts was in the order of sodium sulfate > ammonium sulfate > sodium chloride. Based on this response to salt concentrations, the grafted monolith was applied in hydrophobic interaction chromatography of proteins, and the base-line separation of a six proteins mixture consisting of cytochrome c, myoglobin, ribonuclease A, bovine serum albumin, ovalbumin and thyroglobulin bovine was achieved by a salt gradient elution.  相似文献   

11.
A new kind of pH-/temperature-responsive semi-interpenetrating polymer network hydrogels based on linear sodium carboxymethylcellulose (CMC) and poly(N-isopropylacrylamide) (PNIPA) cross-linked by inorganic clay (CMC/PNIPA/Clay hydrogel) was prepared. The temperature- and pH-responsive behaviors, the mechanical properties of these hydrogels were investigated. The CMC/PNIPA/Clay hydrogels exhibited a volume phase transition temperature around 32 °C with no significant deviation from the conventional PNIPA hydrogels. The swelling ratio of the CMC/PNIPA/Clay hydrogels gradually decreased with increasing the contents of clay. The influence of pH value on swelling behaviors showed that there is a maximum swelling ratio at pH 5.9. Moreover, the CMC/PNIPA/Clay hydrogels exhibited excellent mechanical properties with high tensile stress and elongation at break in excess of 1200%.  相似文献   

12.
Free radical copolymerizations of N-isopropyl acrylamide (NIPAM) and cationic N-(3-aminopropyl) methacrylamide hydrochloride (APMH) were investigated to prepare amine-functional temperature responsive copolymers. The reactivity ratios for NIPAM and APMH were evaluated in media of different ionic strength (rNIPAM = 0.7 and rAPMH = 0.7-1.2). Phase separation behavior of the random copolymers with only 5 mol% of the APMH was found to be suppressed in pure water at temperatures up to 45 °C due to electrostatic repulsion among the cationic amine groups randomly distributed along the copolymer chain. Alternate sequential addition of PNIPAM/APMH mixtures and pure NIPAM was used to provide increased control of the location of APMH units along the chain. Consequently (close to) homo-PNIPAM block(s) were formed as evidenced by its characteristic phase transition at 33 °C. The influences of the monomer feeding time and feeding interval time to the APMH distribution were investigated to prepare copolymers with thermo-induced phase separation under physiologically relevant temperature and to determine the extent of conjugation to poly(ethylene oxide).  相似文献   

13.
Temperature responsive copolymers of dextran grafted with poly(N-isopropylacrylamide) (Dex-g-PNIPAAM) were prepared by atom transfer radical polymerization (ATRP) in homogeneous mild conditions without using protecting group chemistry. Dextran macroinitiator was synthesized by reaction of dextran with 2-chloropropionyl chloride at room temperature in DMF containing 2% LiCl. ATRP was carried out in DMF:water 50:50 (v/v) mixtures at room temperature with CuBr/Tris(2-dimethylaminoethyl)amine (Me6TREN) as catalyst. Several grafted copolymers with well defined number and length of low polydispersity grafted chains were prepared. Temperature induced association properties in aqueous solution were studied as a function of temperature and polymer concentration by dynamic light scattering, fluorescence spectroscopy and atomic force microscopy (AFM). LCST, ranging from 35 to 41 °C, was significantly affected by number and length of grafted chains. The fine tuning of LCST around body temperature is an important characteristic not obtainable by conventional radical grafting of PNIPAAM. Well defined spherical nanoparticles were formed above the LCST of PNIPAAM. Hydrodynamic diameter was in the range 73-98 nm.  相似文献   

14.
The intrachain and interchain hydrogen bonding of poly(N-isopropylacrylamide) (PNIPA) and intermolecular hydrogen bonding between PNIPA chains and the solvent molecules in the mixed solvent of methanol and water have been quantitatively investigated by using Fourier transform infrared (FTIR) spectroscopy at 25 °C. In this spectroscopic system with curve fitting program, we found that in the C-H stretching region, both the N-isopropyl group and the backbone underwent conformational change upon the solvent composition. An analysis of the amide I band suggested that the amide groups of PNIPA were mainly involved in intermolecular hydrogen bonding with water molecules, and the polymer chains were flexible and disordered in the mixed solvent when the methanol volume fraction (χv) was lower than 15%. While χv was in the range of 15-65%, about 30% of these intermolecular hydrogen bonding between the polymer and water were replaced by intrachain and interchain hydrogen bonding, consequently, PNIPA shrinked as aggregates. If χv was above 65%, the interchain hydrogen bonding became predominant due to the solubility characteristics of amphiphilic methanol, and the PNIPA system was homogeneous solution again. We believe that the reentrant transition is related to the weaker interaction between PNIPA molecules and methanol-water complexes, (H2O)m(CH3OH)n (m/n = 5/1, 5/2, 5/3, 5/4, 5/5) as compared to that between PNIPA and free water or free methanol.  相似文献   

15.
Poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel-based etalons have been shown to have visible color and unique spectral properties, which both depend on solution temperature and pH. In this investigation, pNIPAm-co-AAc microgel-based etalons were fabricated on the Au electrode of a quartz crystal microbalance (QCM), and the resonant frequency of the QCM monitored as a function of temperature, at pH 3.0. Furthermore, the resonant frequency at either pH 3.0 or 7.0 was monitored while keeping the solution temperature constant at various temperatures. In all cases, when the solution temperature was below the collapse transition for the microgels (∼32 °C), the resonant frequency at pH 3.0 was lower than at pH 7.0, which we attribute to the film transitioning from a deswollen to swollen state, respectively. It was observed that the magnitude of the resonant frequency change increased as the solution temperature approached the collapse temperature for the microgels. The overall sensitivity to pH was determined to be 1.3 × 10−8 M [H+] Hz−1 and a theoretical detection limit of 390 nM was obtained. This sensitivity will be exploited further for future biosensing applications.  相似文献   

16.
Copolymers of N-isopropylacrylamide (NIPAAm) and itaconic acid (IA) having various compositions were synthesized using free radical solution polymerization in 1,4-dioxane at 50 °C with α,α′-azobisisobutyronitrile (AIBN) as initiator. The structures of the copolymers were confirmed by Fourier transform infrared (FTIR) spectroscopic technique. The copolymer compositions were determined by conductometric and potentiometric methods from the inflection points in the acid-base titration curves and by FTIR spectroscopy through recorded analytical absorption bands for NIPAAm (1620 cm−1 for CO stretching of secondary amides) and for IA (1704 cm−1 for CO stretching) units, respectively. Monomer reactivity ratios of IA (F1)-NIPAAm (F2) pair were estimated using the Finemann-Ross, the inverted Finemann-Ross, the Kelen-Tüdós and the extended Kelen-Tüdós graphical methods. The values ranged from 0.40 to 0.60 for r1 and from 1.20 to 1.90 for r2, depending on the conversion percentage, calculation methods of monomer reactivity ratios and determination methods of copolymer compositions. In all cases, r1r2 < 1 and r1 < r2 indicate the random distribution of the monomers in the final copolymers and the presence of higher amount of NIPAAm units in the copolymer than that in the feed, respectively.  相似文献   

17.
The complexation between poly(N,N-diethylacrylamide) (PDEA) and poly(acrylic acid) (PAA) in aqueous solution was studied by viscometric, potentiometric, and fluorescence techniques. It was found that an interpolymer complex formed between the two polymers through hydrogen bonding interactions with the stoichiometry of r=0.6 (r is unit molar ratio of PAA/PDEA), and the complex formation show the dependence on pH values. The phase behaviour studies showed that the lower critical solution temperature of the PDEA-PAA aqueous solution gradually increased with the increasing of r from 0.01 to 0.15, until a soluble system in the whole temperature region was obtained, which remained in the range of r=0.15-0.3. At higher PAA concentrations, when r is above 0.3, the system appeared phase separation, and almost no temperature dependence was observed. Based on these conclusion and structure characteristics of PDEA and PAA, a model containing only short sequences of monomer residues was proposed for the structure of PDEA-PAA complex.  相似文献   

18.
A series of hydrogels based on N-isopropylacrylamide, sodium acrylate, and N-tert-butylacrylamide were synthesized by free radical polymerization in a mixture of dioxane and water with tetra(ethylene glycol) diacrylate as the crosslinker and benzoyl peroxide as the initiator. The swelling behavior including the swelling rate of the crosslinked gels in water was studied with gravimetric method. The swelling ratio of the gel (0.1 mol% crosslinking) can reach 420 g/g at 20 °C and such a gel can release 96% of the water absorbed at 40 °C. The lower critical swelling temperature (LCST) of the copolymers can be adjusted by changing the chemical composition of the polymers. Such crosslinked gels can be potentially used as thermosensitive superabsorbent because of their high water uptake and thermal sensitivity.  相似文献   

19.
In this contribution we have developed thermosensitive polymer matrices based on N-isopropylacrylamide (NIPAAm). Preparation of the hydrogels involved photopolymerisation of a combination of NIPAAm, 1-vinyl-2-pyrrolidinone (NVP) and distilled water, in appropriate amounts and contained a UV-light sensitive initiator called 1-hydroxycyclohexylphenylketone. As NIPAAm monomer could be readily dissolved in mixtures of liquid NVP and distilled water, the use of organic solvents was not required in the polymerisation process. Furthermore, chemical crosslinking agents are not needed in the synthesis. By alternating the feed ratio, hydrogels were synthesised to have lower critical solution temperatures (LCST) in the vicinity of 37 °C. This ability to shift the phase transition temperature of the gels provides excellent flexibility in tailoring transitions for specific uses. The transition temperature of the pseudo gels was established using cloud point measurement and modulated differential scanning calorimetry (MDSC). The chemical structure of the xerogels was characterised by means of Fourier transform infrared spectroscopy (Ftir), while swelling experiments in distilled water indicate that the swelling and dissolution behaviour of the gels is strongly temperature dependent.  相似文献   

20.
At four different charge densities, ionic hydrogels based on N,N-dimethylacrylamide (DMAAm), acrylamide (AAm), and itaconic acid (IA) were synthesized by free-radical cross-linking copolymerization in water with N,N-methylenebis(acrylamide) (BAAm) as the cross-linker, ammonium persulfate (APS) as the initiator, and N,N,N′,N′-tetramethylenediamine (TEMED) as the activator. The swelling behaviors of these hydrogels were analyzed in buffer solutions at various pH. It was observed that the swelling behavior of cross-linked ionic poly(N,N-dimethylacrylamide-co-acrylamide) [P(DMAAm-co-AAm)] hydrogels at different pHs agreed with the modified Flory-Rehner equation based both on the phantom network and affine network models and the ideal Donnan theory. In addition, the kinetics of swelling of the hydrogels was studied in pH 2, 5 and 9 buffer solutions. The swelling curves exhibited the characteristic features of transport process, apparently the Fickian diffusion of fast rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号