首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以可膨化石墨为原料,高温处理得到膨化石墨,再经过超声处理,得到纳米薄片石墨。将得到的纳米薄片石墨与甲基丙烯酸甲酯单体在超声作用下预聚,灌模,得到块状的聚甲基丙烯酸甲酯(PMMA)/石墨复合材料。用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、选区电子衍射SAD、红外、热重等分析仪器表征了纳米石墨薄片及PMMA/石墨复合材料。测试了复合材料的力学、电学性能,发现在室温下该复合材料的渗滤阀值为1.3%(wt),且保证石墨含量在1.4%(wt)时,即可保证复合材料具有良好的电学和力学性能。  相似文献   

2.
聚甲基丙烯酸甲酯/石墨薄片纳米复合及其导电性能研究   总被引:5,自引:0,他引:5  
在聚合物绝缘材料基体中添加入足够数量的导电填料 ,聚合物便具有导电性或半导体性能 .石墨材料 ,由于资源丰富、价廉、性质稳定 ,被广泛用作导电聚合物复合材料的填料 .一般 ,填料含量越高 ,复合材料的导电性能越好 ,但是材料的力学性能也随之劣化 ,特别是材料脆性增加 .将石墨加工成纳米级粒子 ,再与聚合物纳米复合 ,有望用较少的石墨填充量使复合材料具有良好的电传导性能 ,从而保持材料的力学性能 .最近报道的利用膨胀石墨与聚合物实现纳米复合的研究引起了人们的兴趣 ,如所报道的尼龙 6 膨胀石墨[1] 、PS PMMA 膨胀石墨[2 ] 、PP …  相似文献   

3.
Pristine multi-walled carbon nanotubes (MWNTs) were incorporated into poly(vinylidene fluoride) (PVDF), poly(methyl methacrylate) (PMMA), and PVDF/PMMA blends to achieve binary and ternary nanocomposites. MWNTs were more compatible with the PVDF matrix than with the PMMA-containing matrices. MWNT addition did not alter the development of α-form PVDF crystals in the binary/ternary composites. Nucleation and overall isothermal crystallization of PVDF were enhanced by the presence of MWNTs, and enhancements were optimal in the PVDF/MWNT binary composites. Avrami analysis revealed that addition of MWNTs led to more extensive athermal-type nucleation of PVDF, and that PMMA slightly decreased the crystal growth dimension of PVDF. The equilibrium melting temperature (Tm°) of PVDF increased in the binary composites but remained nearly constant in the ternary system. Thermal stability was enhanced in the binary/ternary composites, and enhancements were more evident in the air environment than in nitrogen. Rheological property measurements revealed that the intensely entangled chains of high-molecular weight PVDF dominated the rheological response of PVDF-included samples in the melt state. A (pseudo)network structure was developed in each of the PVDF-included samples as well as in the 1 phr MWNT-added PMMA/MWNT composite. The storage moduli of the PVDF, PMMA, and PVDF/PMMA:1/1 blend increased to 37%, 22% and 34%, respectively, at 40 °C after addition of 1 phr MWNT.  相似文献   

4.
高分子/石墨复合材料的制备与导电性能的研究进展   总被引:2,自引:0,他引:2  
许晶玮  庞浩  胡美龙  廖兵 《化学通报》2007,70(8):577-581
介绍了近年来高分子/石墨复合材料制备方法和导电机理的研究进展。通过氧化、插层以及插层后加热可以在石墨碳层上引入极性基团,提高其比表面积,有利于高分子进行插层。用处理后比表面积高的石墨制备复合材料可以降低材料的渗滤值,提高材料的导电性能。复合材料的导电机理可以用渗滤理论来解释。  相似文献   

5.
聚合物/石墨纳米复合材料研究进展   总被引:8,自引:0,他引:8  
综述聚合物 /石墨纳米复合材料近年来的研究情况 ,介绍通过各种不同的途径制备聚合物 /石墨纳米复合材料的过程与原理 ,总结其导电性能 ,机械性能以及影响性能的因素 ,并对其发展做了展望。  相似文献   

6.
A conductive nanocomposite with an ordered conductive network and low-percolation threshold were prepared by adding foliated graphite (FG) nanosheets to high-density polyethylene (HDPE). The piezoresistive behavior of the nanocomposites was investigated under different pressure ranges. There existed a critical pressure below which composite resistance decrease with the increase of pressure and above which resistance increased sharply with increasing of pressure. The critical pressure is a function of the concentration of FG and the sensitivity of the change in resistivity against the applied pressure strongly depended on the FG content. The critical pressures of the nanocomposites with FG concentration at 6 vol.%, 11 vol.%, 12 vol.%, are about 7 MPa, 10 MPa, and 12 MPa, respectively. After repeated pressure treatment, there was a gradual decrease in the change of conducting structure although a permanent damage occurred due to the irreversible deformation of polymer matrix. As a result, the piezoresistive behavior of HDPE/FG nanocomposites tended to be constant under cyclic compression. The behavior was accounted for by an extension of tunneling conduction theory to which provides a good approximation to the piezoresistive effect.  相似文献   

7.
A new method for the synthesis of exfoliated graphite and polyaniline (PANI)/graphite nanocomposites was developed. Exfoliated graphite nanosheets were prepared through the microwave irradiation and sonication of synthesized expandable graphite. The nanocomposites were fabricated via the in situ polymerization of the monomer at the presence of graphite nanosheets. The as-synthesized graphite nanosheets and PANI/graphite nanocomposite materials were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The conductivity of the PANI/graphite nanocomposites was dramatically increased over that of pure PANI. TGA indicated that the incorporation of graphite greatly improved the thermal stability of PANI. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1972–1978, 2004  相似文献   

8.
插层法悬浮聚合制PMMA/蒙脱土纳米复合材料   总被引:30,自引:0,他引:30  
文献中蒙脱土的有机化处理一般采用一次插层法处理 ,本文采用了一种新的二次插层法 ,通过对一次插层法和二次插层法插层效果的比较 ,确定了二次插层法为一种理想的蒙脱土有机化方法 .经过MMA对蒙脱土插层的悬浮聚合 ,FT IR ,XRD和SEM等试验结果证明蒙脱土已经被有效地撑开 ,但发现蒙脱土的加入会降低聚合反应的转化率和聚合物的收率 ,悬浮聚合物颗粒的形态变得不规则 ,粒径也变大 .差热分析、溶解实验和应力 应变测试均表明蒙脱土的加入能提高PMMA的性能 ,蒙脱土的最佳用量在 3 %左右 .  相似文献   

9.
Facile synthesis of highly conductive polyaniline/graphite nanocomposites   总被引:1,自引:0,他引:1  
A facile process for the synthesis of exfoliated graphite and polyaniline/graphite (PANI/graphite) nanocomposite was developed. Graphite nanosheets were prepared via the microwave irradiation and sonication from synthesized expandable graphite. The nanocomposites were fabricated via in situ polymerization of aniline monomer in the presence of graphite nanosheets. The nanoscale dispersion of graphite sheets was evidenced by the SEM and TEM examinations. According to the electrical conductivity test, the conductivity of the final PANI/graphite nanocomposites were dramatically increased compared with pristine PANI. From the thermogravimetric analysis, the introduction of graphite exhibits a beneficial effect on the thermal stability of PANI.  相似文献   

10.
Poly(methylmetacrylate)/montmorillonite (PMMA)/(MMT) nanocomposites were prepared by one-step in situ intercalative solution polymerization involving simultaneous modification of MMT with quaternary ammonium salts (QAS), polymerization and polymer intercalation. Polymerization proceeded at 70 °C in a mixture of ethanol and water, whereas the nanocomposite was precipitated with only water. Four QAS’s with different alkyl chain lengths, as well as a QAS with an additional acrylic group, were used to study the influence of the type of quaternary ammonium salt on intercalation. The largest extent of intercalation was achieved in nanocomposites with the QAS having one long alkyl (C16) chain. The obtained PMMA/MMT intercalated nanocomposites exhibited a higher glass transition temperature, better thermal stability, and improved solvent resistance than the pure PMMA.  相似文献   

11.
An effective process for the synthesis of graphite nanosheets/AgCl/polypyrrole (NanoGs/AgCl/PPy) composites was developed. NanoGs were prepared by treating the expanded graphite with sonication in aqueous alcohol solution. Then nanocomposites were fabricated via in situ polymerization of pyrrole in the presence of NanoGs and AgCl particles through two-step sequentially inverse microemulsion method. The nanoscale dispersion of NanoGs and AgCl particles was evidenced by the SEM and TEM examinations. From the thermogravimetric analysis, the introduction of inorganic nano-AgCl and NanoGs exhibited a beneficial effect on the thermal stability of pure PPy. According to the four-point-probe test, the conductivity of the final NanoGs/AgCl/PPy composites was dramatically increased compared with pure PPy.  相似文献   

12.
Preparation of PLA based nanocomposites was carried out by using two different nanofillers: expanded graphite and organically modified montmorillonite. The addition and co-addition of these nanofillers to PLA using the melt-blending technique provides nanocomposites that showed significant enhancements in rigidity, thermal stability and fire retardancy of the polymer matrix. The presence of dispersed graphite nanolayers in PLA significantly accelerated the polyester crystallization, whereas the essential increase of thermal resistance is mainly connected to the addition of organoclay. The structure of the nanocomposites was examined by Wide Angle X-ray Scattering Analysis and Transmission Electron Microscopy. The improvement of thermal and mechanical properties obtained by the presence of both nanoparticles in PLA were associated to the good (co)dispersion and to the co-reinforcement effect, whilst the fire retardant properties were found to be related to the combined additive action of both nanofillers.  相似文献   

13.
In this study, the nylon 6/foliated graphite (FG) electrically conducting nanocomposites with a low percolation threshold of less than 0.75 vol % have been prepared via an in situ polymerization approach in the presence of FG nanosheet filler. Based on laser counting, scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction characterization techniques, the structures and morphologies of the nanoscale filling particles and the resulting nanocomposites were examined. Using percolation theory, the conductivity behavior of the nanocomposite samples were modeled and analyzed. Through the use of mean‐field and excluded volume approaches, it was demonstrated that the experimentally observed percolation threshold values could be approximately estimated, and a correlation between the percolation threshold and the aspect ratio of FG particles could be quasi‐quantitatively established. Also, preliminary studies on the effects of FG nanosheets on the thermal properties of the host nylon 6 were performed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2844–2856, 2004  相似文献   

14.
Mechanical properties of hybrid PMMA composites reinforced with UHMWPE fiber and nano‐titanium dioxide (2, 4, 6, and 8 wt%) was investigated. In this work, the effect of UHMWPE fiber surface treatment on tensile, flexural, and impact properties of PMMA composites was studied. The fiber loadings were varied from 0% to 20%. The addition of UHMWPE fiber had caused a decline in the tensile strength of the PMMA composite. Results revealed that the presence of titanium dioxide on the surface treated UHMWPE fiber has further enhanced the efficiency of stress transfer from the matrix to the fiber thus improved the interfacial adhesion between the UHMWPE fiber and PMMA matrix.  相似文献   

15.
石墨与聚苯乙烯的纳米复合过程研究   总被引:21,自引:3,他引:21  
石墨具有电导率高、化学稳定性好等优点 ,被广泛应用于聚合物 石墨复合导电材料[1~ 3] .石墨作为聚合物导电填料一般以粉末形态居多 .用粉末状石墨填料往往需要较高的填充量才能得到理想的导电性能 .石墨也可以制备成膨胀石墨 ,将它与聚合物复合 ,可以大幅度降低石墨的填充量 .如一般粉末状石墨填料与聚合物复合制备的导电材料其逾渗阀值为 1 5 %~ 2 0 % ,电导率达到 1 0 -4 ~1 0 -7S cm[4 ] ;而若采用膨胀石墨方法 ,逾渗阀值则低于 3% ,电导率可达到 1 0 -2 S cm以上[5~ 7] .Pan等[7] 报道用膨胀石墨与聚合物复合得到纳米复合…  相似文献   

16.
Mesophase pitch (MP)/exfoliated graphite nanoplatelets (GNPs) nanocomposite has been prepared by an efficient method with an initiation of graphite intercalation compounds (GIC). X-ray diffraction, optical microscopy, high-resolution transmission electron microscopy and scanning electron microscopy analysis techniques are used to characterize the samples. It is observed that GIC has exfoliated completely into GNPs during the formation of MP/GNPs nanocomposite and the GNPs are distributed uniformly in MP matrix, which represent a conductive path for a movement of electrons throughout the composites. Electrochemical tests demonstrate that the carbonized MP/GNPs nanocomposite displays higher capacity and better cycle performance in comparison with the pure carbonized MP. It is concluded that such a large improvement of electrochemical performance within the nanocomposite may in general be related to the enhanced electronic conductivity, which is achieved by good dispersion of GNPs within MP matrix and formation of a 3D network of GNPs.  相似文献   

17.
马来酸酐接枝聚丙烯/石墨导电纳米复合材料的研究   总被引:11,自引:2,他引:11  
用溶液插层 (SI)法制备了马来酸酐接枝聚丙烯 (gPP) 膨胀石墨 (EG)导电纳米复合材料 ,以熔体混合(MM)法作对照 ,通过室温体积电导率 (σ)测试和OM、SEM、TEM观察 ,研究了复合材料的制备方法、微观结构和导电性能关系 .结果表明 ,SI法制得纳米复合材料的室温逾渗阈值c=0 6 7vol% ,远低于MM法制得复合材料的c=2 96vol% ;3 90vol%EG含量下 ,前者的σ达 2 4 9× 10 - 3S cm ,而后者的σ仅 6 85× 10 - 9S cm .产生上述差异的原因 ,与两种方法制得复合材料中EG分散相的形态及其内部微结构直接相关 .  相似文献   

18.
The preparation of PMMA-clay nanocomposites was investigated by using sodium dodecylbenzenesulfonate (SDS) and potassium peroxodisulfate (KPS) as a surfactant and chain initiator for an in situ emulsion polymerization reaction, respectively. The as-prepared nanocomposites were then characterized by Fourier transformation infrared (FTIR) spectroscopy, wide-angle X-ray diffraction (WAXRD) patterns and transmission electron microscopy (TEM).It should be noted that the nanocomposite coating containing 1 wt% of clay loading was found to exhibit an observable enhanced corrosion protection on cold-rolled steel (CRS) electrode at higher operational temperature of 50 °C, which was even better than that of uncoated and electrode-coated with PMMA alone at room temperature of 30 °C based on the electrochemical parameter evaluations (e.g., Ecorr, Rp, Icorr, Rcorr and impedance). In this work, all electrochemical measurements were performed at a double-wall jacketed cell, covered with a glass plate, through which water was circulated from a thermostat to maintain a constant operational temperature of 30, 40 and 50 ± 0.5 °C. Moreover, a series of electrochemical parameters shown in Tafel, Nyquist and Bode plots were all used to evaluate PCN coatings at three different operational temperatures in 5 wt% aqueous NaCl electrolyte. The molecular barrier properties at three different operational temperatures of PMMA and PCN membranes were investigated by gas permeability analyzer (GPA) and vapor permeability analyzer (VPA). Effect of material composition on the molecular weight and optical properties of neat PMMA and PCN materials, in the form of solution and membrane, were also studied by gel permeation chromatography (GPC) and UV-vis transmission spectra.  相似文献   

19.
A new approach has been developed to study the dispersion/delamination of expanded graphite (EG) in poly(lactide) (PLA) by using Raman spectroscopy. This technique is more sensitive and therefore fully complementary to more standard dispersion characterization techniques like SEM, TEM and X-ray diffraction. The incorporation of EG into PLA was carried out by a twin-screw micro-extruder. The effects of the dispersion and delamination of EG on the thermal and thermo-mechanical properties of polylactide-EG nanocomposites were investigated. In contrast to the standard techniques, Raman spectroscopy was able to show a partial exfoliation, which could therefore explain the slight improvement of the PLA-EG thermal and thermo-mechanical properties.  相似文献   

20.
Composites have been produced by melt-blending biodegradable polylactide (PLA) with commercially available expanded graphite (EG). Using different techniques of addition, the manifold effects of EG on PLA molecular, thermo-mechanical and fire-retardant properties were evaluated. The EG nanofiller provides PLA composites with competitive functional properties. They have a high rigidity, with Young's modulus and storage modulus increasing with EG content. They also have excellent thermal stability while preserving the glass transition and melting temperature of the original PLA matrix. Purification and pre-dispersion of EG nanofiller proved beneficial for preserving PLA molecular weights and led to improved mechanical performance. The presence of dispersed graphene nanolayers in PLA significantly accelerated the polyester crystallization process. The flame retardant properties also displayed improvements with a large decrease in the maximum rate of heat release as recorded by cone calorimetry, whereas the horizontal burning test (UL94 HB) was successfully passed revealing non-dripping and char formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号