首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the γ‐form crystal on the thermal fractionation of a commercial poly(propylene‐co‐ethylene) (PPE) has been studied by differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) techniques. Two thermal fractionation techniques, stepwise isothermal crystallization (SIC) and successive self‐nucleation and annealing (SSA), have been used to characterize the molecular heterogeneity of the PPE. The results indicate that the SSA technique possesses a stronger fractionation ability than that of the SIC technique. The heating scan of the SSA fractionated sample exhibits 12 endothermic peaks, whereas the scan of the SIC fractionated sample only shows eight melting peaks. The WAXD observations of the fractionated PPE samples prove that the content of the γ‐form crystals formed during the thermal treatment of the SIC technique is much higher than that of the SSA treatment. The former is 57.4%, whereas the later is 12.6%. The effect of theγ‐form crystals on thermal fractionation ability is discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4320–4325, 2004  相似文献   

2.
The multiple melting behavior of poly(1,3-propylene terephthalate) (PPT) samples after isothermal crystallization from the melt was studied. The step-scan temperature-modulated differential scanning calorimetry (TMDSC) and high rate DSC were used to investigate this behavior in conjunction with standard DSC, wide-angle X-ray diffraction (WAXD) and polarizing light microscopy (PLM). The effect of PPT average molecular weight on the melting was also examined. In general multiple endotherms after isothermal crystallization of PPT were attributed to a continuous crystal perfection process during the subsequent heating scan via melting-recrystallization-remelting. Multiple melting behavior was more pronounced for the low molecular weight PPT. Step-scan TMDSC showed that extensive recrystallization occurs in PPT samples, especially after rapid isothermal crystallization. In fact two recrystallization exothermic peaks were observed. High rate DSC revealed the initial morphology generated during the isothermal step and showed that the low and middle peaks are associated with melting of primary crystals while the high temperature peak should be attributed to melting of recrystallized material.  相似文献   

3.
The crystallization behavior of isotactic propylene‐1‐hexene (PH) random copolymer having 5.7% mole fraction of hexene content was investigated using simultaneous time‐resolved small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques. For this copolymer, the hexene component cannot be incorporated into the unit cell structure of isotactic polypropylene (iPP). Only α‐phase crystal form of iPP was observed when samples were melt crystallized at temperatures of 40 °C, 60 °C, 80 °C, and 100 °C. Comprehensive analysis of SAXS and WAXD profiles indicated that the crystalline morphology is correlated with crystallization temperature. At high temperatures (e.g., 100 °C) the dominant morphology is the lamellar structure; while at low temperatures (e.g., 40 °C) only highly disordered small crystal blocks can be formed. These morphologies are kinetically controlled. Under a small degree of supercooling (the corresponding iPP crystallization rate is slow), a segmental segregation between iPP and hexene components probably takes place, leading to the formation of iPP lamellar crystals with a higher degree of order. In contrast, under a large degree of supercooling (the corresponding iPP crystallization rate is fast), defective small crystal blocks are favored due to the large thermodynamic driving force and low chain mobility. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 26–32, 2010  相似文献   

4.
用示差扫描量热仪(DSC)和广角X射线衍射仪(WAXD)研究了溶液共混法和熔融共混法制备的等规聚丙烯/二元乙丙橡胶(iPP/EPR)(85:15,W/W)合金的晶相结构.发现溶液共混法制得的iPP/EPR合金晶相中仅存在α-iPP,而熔融共混样品中则同时生成了α-iPP和β-iPP.这一结果表明,EPR并不是iPP/EPR合金中β-iPP生成的关键因素.考察了结晶温度和熔体热处理对iPP/EPR合金晶相结构的影响,发现通常的热处理并不能消除合金中β-iPP的生成.  相似文献   

5.
The influence of the order of polymer melt on the subsequent crystallization and melting has been carefully studied. The experimental data show that the order of isotactic polypropylene (iPP) melt decreases with increases in the fusion temperature. For an iPP sample isothermally crystallized at 130 °C for half an hour, the degree of order of melt is higher when the fusion temperature is lower than about 170.5 °C, hence the lamellae formed in a rapid cooling process are perfect. If the fusion temperature is not higher than 167 °C, some thicker lamellae can exist in the melt. The melting of these unmelted lamellae and those lamellae recrystallized in the cooling process result in double endotherms. On the other hand, when the fusion temperature is higher than 170.5 °C, the order of the iPP melt decreases greatly; thus, the lamellae formed in the following cooling process are imperfect. At a lower heating rate, the recrystallization or reorganization of these imperfect lamellae also leads to double melting endotherms. Received: June 16, 2000 Accepted: October 16, 2000  相似文献   

6.
通过示差扫描量热仪(DSC)和广角X射线衍射仪(WAXD)研究了聚左旋乳酸(PLLA)的光学纯度(91.6%、93.3%、94.0%、97.0%、98.4%)对聚乳酸结晶和熔融行为的影响。 在非等温结晶过程中,随着光学纯度的提高,聚乳酸的结晶峰值温度、熔点、熔融焓均提高。 在等温结晶过程中,PLLA的半结晶时间(t1/2)随着光学纯度的增加而减少,在结晶温度100~110 ℃区间内半结晶时间均达到最小值;含有不同光学纯度PLLA的Avrami指数n≈3,表明光学纯度的变化不能改变聚乳酸以三维球晶生长的异相成核机理。 随着光学纯度的增加,聚乳酸δ-晶型转变为α-晶型的临界温度升高。 聚乳酸的结晶和熔融行为对光学纯度具有依赖性。  相似文献   

7.
成核剂含量对β晶相聚丙烯结晶与熔融行为的影响   总被引:13,自引:2,他引:13  
用DSC研究了β成核剂含量对β聚丙烯在等温与非等温结晶条件下的结晶与熔融行为的影响,发现当成核剂含量为0.005%时,结晶焓△H_c、β晶的熔融焓△H_(mβ)及熔点T_(mβ)均为最大,而α晶的相对含量最小.广角X-衍射数据表明,成核剂含量高的试样的(301)衍射峰的相对强度下降,反映分子链排列的纵向有序性降低.根据聚丙烯分子在β成核剂上附生结晶的成核机理解释了上述结果.  相似文献   

8.
通过熔体淬冷方式制备了中介相态丙烯-乙烯无规共聚物(PPR),综合使用原位红外光谱、原位X-射线散射(WAXD/SAXS)、示差扫描量热分析(DSC)和动态机械热分析(DMA)等方法系统研究了中介相态PPR在升温过程中的微观结构演变.红外光谱研究结果表明,在连续升温过程中,中介相态PPR在30~50?C之间分子链构象发生了变化,其可能源于刚性无定形区(RAF)中部分链段构象的无序化转变,并发现在RAF中存在长度为n≤13(n为31螺旋序列中丙烯单元的个数)的螺旋序列.中介相态PPR在连续升温过程中经历了RAF中链段构象的无序化转变、中介相向α晶的转变、不完善α晶的熔融和α晶的完善化,以及α晶熔融4个转变过程.中介相向α晶的转变是一个异相成核生长过程,其结晶活化能ΔE=67.94 k J/mol.  相似文献   

9.
Sodium benzoate (SB), a conventional nucleating agent of α‐phase isotactic polypropylene (iPP) was discovered to induce the creation of β‐phase iPP under certain crystalline conditions. Polarized optical microscopy (POM) and wide angle X‐ray diffraction (WAXD) were carried out to verify the versatile nucleating activity of SB and investigate the influences of SB's content, isothermal crystallization temperature, and crystallization time on the formation of β‐phase iPP. The current experimental results indicated that, under isothermal crystallization conditions, SB showed peculiar nucleating characteristics on inducing iPP crystallization which were different from those of the commercial β form nucleating agent (TMB‐5). The content of β crystal form of iPP nucleated with SB (PP/SB) increased initially with the increase of crystallization temperature, nucleating agent (SB) percentage or crystallization time, reached a maximum value, and then decreased as the crystallization temperature, nucleating agent percentage or crystallization time further increased. While the content of β crystal form of iPP nucleated with TMB‐5 (PP/TMB‐5) showed a completely different changing pattern with the crystallization conditions. The obvious difference of the two kinds of nucleating agents on inducing iPP crystallization can be explained by the versatile nucleating ability of SB. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1183–1192, 2008  相似文献   

10.
The effect of the addition of two combined fillers, smectite clay and diamond and smectite clay and carbon nanoparticles, on structure, morphology, isothermal and non isothermal crystallization behaviour, tensile and thermal properties of isotactic polypropylene (iPP) has been investigated by using several techniques: wide angle X-ray diffraction, optical and scanning electron microscopy, thermogravimetry, differential scanning calorimetry and tensile techniques. It was found that nanoparticles of diamond and carbon favour the nucleation of the β-form of iPP crystal, whereas the clay nanolayers do not have any influence on the crystal structure of iPP. The thermal stability of iPP/(clay+diamond) and iPP/(clay+carbon) is improved with respect to neat iPP, whereas no influence is detected when only clay is added to iPP. At the given crystallization conditions, the overall crystallization peak of iPP/(clay+diamond) almost exactly overlaps the crystallization peak of neat iPP, whereas in the case of iPP/clay and iPP/(clay+carbon) the maximum of the crystallization peaks is shifted to higher temperature. The spherulite growth rate, G values do not differ from one another. The iPP/(clay+carbon) system shows ductile behavior. The other systems show brittle behavior with failure before necking. These results were related with the very high percentage of beta phase present in the samples of iPP/(clay+carbon).  相似文献   

11.
Linear low-density polyethylene (LLDPE) was grafted onto the backbone chains of isotactic polypropylene (iPP) during reactive melt-extrusion to produce a novel toughening modifier, propylene/ethylene graft copolymer (PEGC), to improve the properties of iPP random(-copolymerized with a small amount of ethylene) (PPR). The crystallization behavior as well as the non-isothermal crystallization kinetics of the PEGC modified PPRs were investigated via differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). The fractured surface topography was characterized using scanning electron microscopy (SEM), and the mechanical properties through notched impact and tensile testing as well as dynamic mechanical thermal analysis (DMTA). The results show that, at a PEGC content of 8 wt%, notched impact strength of the PEGC modified PPR increased by 30.6% at low temperature (−25 °C). As regards crystalline morphology, the PEGC, as an effective heterogeneous nucleating agent, fostered nucleation of the PPR to elevate its crystallization temperature as well as rate of crystallization, thus refining the PPR (iPP) spherulites and improving the interfacial structure between iPP spherulites. The Jeziorny approach was unsatisfactory for simulation of the non-isothermal crystallization process of the PEGC modified PPRs; however, the Mo method described consistently the crystallization kinetics over the entire isothermal process.  相似文献   

12.
Crystallization and melting behaviors of isotactic polypropylene (iPP) nucleated with compound nucleating agents of sodium 2,2′‐methylene‐bis (4,6‐di‐tert‐butylphenyl) phosphate (hereinafter called as NA40)/dicyclohexylterephthalamide (hereinafter called as NABW) (weight ratio of NA40 to NABW is 1:1) were studied by differential scanning calorimetry and wide‐angle X‐ray diffraction (WAXD), the relative β‐amount of iPP nucleated with these compound nucleating agents was also calculated in Turner‐Jones equation by using wide‐angle X‐ray diffraction data. Under isothermal crystallization, there exists a temperature range favorable for formation of β‐iPP. When the concentration of compound nucleating agents is 0.2 wt %, the temperature range is from 100 to 140 °C. While in nonisothermal crystallization, lower cooling rate is favorable for form of β‐iPP and the relative β‐amount of iPP increases with the decreasing of cooling rate in crystallization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 911–916, 2008  相似文献   

13.
Isotactic polypropylene (iPP) was crystallized using temperature modulation in a differential scanning calorimeter (DSC) to thicken the crystals formed on cooling from the melt. A cool-heat modulation method was adopted for the preparation of the samples under a series of conditions. The effect of modulation parameters, such as temperature amplitude and period was monitored with the heating rate that followed. Thickening of the lamellae as a result of the crystallization treatment enabled by the cool-heat method lead to an increase in the peak melting temperature and the final traces of melting. For instance, iPP melting peak shifted by up to 3.5°C with temperature amplitude of 1.0°C while the crystallinity was increased from 0.45 (linearly cooled) to 0.53. Multiple melting endotherms were also observed in some cases, but this was sensitive to the temperature changes experienced on cooling. Even with a slower underlying cooling rate and small temperature amplitudes, some recrystallization and reorganization occurred during the subsequent heating scan. The crystallinity was increased significantly and this was attributed to the crystal perfection that occurred at the crystal growth surface. In addition, temperature modulated differential scanning calorimetry (TMDSC) has been used to study the melting of iPP for various crystallization treatments. The reversing and non-reversing contribution under the experimental time scale was modified by the relative crystal stability formed during crystallization. Much of the melting of iPP was found to be irreversible.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
Shear-induced crystallization of isotactic polypropylene (iPP) homo-, block, and random copolymers was studied and compared to that in quiescent melt. It was evidenced by means of the thermo-optical technique that melt-shearing, caused by fiber pulling, is associated with the development of α-row-nuclei. The surface of the in situ formed α-row-nuclei may induce the growth of the β-modification of iPP resulting in a cylindrite of polymorphous composition. The polymorphous composition is controlled by the temperature-dependent relative growth rate of the α- and β-iPP for which a model explanation was given. The β-nucleation ability of the α-row-nuclei is lost by melt-shearing at high temperature or remelting. This was attributed to a coverage of the β-nuclei by the α-phase. The structural memory of the supermolecular structures was studied in repeated melting and crystallization cycles and discussed. It was found that the quality of the fiber did not influence the mechanisms concluded. The shear-induced crystallization of propylene block copolymers was highly analogous to the homopolymers. In case of the random copolymers, however, crystallization in sheared melt resulted in an α-cylindritic structure, because for propylene random copolymers the growth rate of the α-modification is always higher than that of the β. It was also demonstrated that the mechanism of shear-induced crystallization was unaffected when the crystallizing PP melt contained selective β-nucleants. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
A study concerning the effect of vibration on the crystal structure and morphology for isotactic polypropylene(iPP) was conducted. The crystallite size. crystal structure and crystallinity of iPP under or without vibration treatment were investigated by means of differential scanning calorimetry(DSC) and wideangle X-ray diffraction(WAXD). The results reveal that the crystallinity of the vibrated samples decreases at a high cooling rate, but it remains constant at a low cooling rate because of the chain relaxation of iPP. It has been found that vibration obviously increases the content of β-form of crystal phase and the amount of β-crystal mainly depends on the vibration amplitude.  相似文献   

16.
Crystallization kinetics of β-nucleated isotactic polypropylene (β-iPP) under isothermal conditions were investigated by differential scanning calorimetry. iPP was nucleated by a trisamide derivative, namely tris-2,3-dimethyl-hexylamide of trimesic acid (TATA). In the presence of TATA possessing dual nucleating ability, the formation of the α- and β-form occurs simultaneously. An isothermal stepwise crystallization method is suggested in this study, which can separate the crystallization process of β- and α-iPP and consequently their crystallization kinetics can be evaluated separately. The results indicated that the mechanism of crystallization changes in temperature especially in the vicinity of the upper critical temperature of the formation of the β-phase. In addition, it was found that the ratio of the growth rates of β- and α-modification determines the characteristics of crystallization and influences the apparent rate constant of crystallization of both polymorphs.  相似文献   

17.
The influences of α/β compound nucleating agents based on octamethylenedicarboxylic dibenzoylhydrazide on crystallization and melting behavior of isotactic polypropylene (iPP) were analyzed. It is found that the crystallization temperatures of nucleated iPP were increased by above 11.0°C and the relative contents of β‐crystals (Kβ ) in iPP reached above 0.40 after addition of compound nucleating agents. The Kβ values depend on cooling rate, crystallization temperature in isothermal crystallization, and the difference between the crystallization temperatures of iPP nucleated by two individual nucleating agents. The nonisothermal crystallization kinetics were studied by Caze method and Mo method, respectively. The effective activation energy was calculated by the Friedman's method. The results illustrate that the half crystallization time was shortened and the crystallization rate was increased obviously after addition of nucleating agents, and the effective activation energy was increased with the relative crystallinity.  相似文献   

18.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

19.
The self-made capillary dynamic rheometer was adopted to study the relationship between the crystallization behavior of isotactic polypropylene (iPP) and the vibration shear conditions, namely, vibration amplitude and vibration frequency. The crystalline structure of iPP under different vibration conditions was characterized by using differential scanning calorimeter (DSC) and wide-angle X-ray diffractometer (WAXD) techniques. The samples extruded under vibration shear conditions had a higher melting temperature (from DSC). A new shoulder-shape peak appeared at ca. 162 °C under low frequency or low amplitude conditions, which was engulfed by the main melting peak with the increase of the vibration amplitude or frequency. This was probably an indication that more perfect crystals had formed [Polym Eng Sci 38 (1998) 1-20]. The WAXD demonstrated that crystalline form of iPP extruded was not changed but the average crystalline size decreased, according to the Scherrer formula [Analytical methods of polymer materials, China Petrochemical Press, Beijing, 1997]. This proved a large increase in the number of small crystals.  相似文献   

20.
Segmented poly(ether‐block‐amide) copolymers are typically known as polyamide‐based thermoplastic elastomers consisting of hard, crystallizable polyamide block and flexible, amorphous polyether block. The melting characteristics of a poly(ether‐block‐amide) copolymer melt‐crystallized under various quiescent, isothermal conditions were calorimetrically investigated using differential scanning calorimetry (DSC). For such crystallized copolymer samples, their crystalline structures under ambient condition and the structural evolutions upon heating from ambient to complete melting were characterized using ambient and variable‐temperature wide‐angle X‐ray diffractometry (WAXD), respectively. It was observed that dependent of specific crystallization conditions, the copolymer samples exhibited one, two, or three melting endotherms. The ambient WAXD results indicated that all melt‐crystallized copolymer samples only exhibited γ‐form crystals associated with the hexagonal habits of the polyamide homopolymer, whereas variable‐temperature WAXD data suggested that upon heating from ambient, a melt‐crystallized copolymer might exhibit so‐called Brill transition before complete melting. Based on various DSC and variable‐temperature WAXD experimental results obtained in this study, the applicability of different melting mechanisms that might be responsible for multiple melting characteristics of various crystallized PEBA copolymer samples were discussed. It was postulated that the low (T m1) endotherm was primarily because of the disruption of less thermally stable, short‐range ordered structure of amorphous polyamide segments of the copolymer, which was only formed after the completion of primary crystallization via so‐called annealing effects. The intermediate (Tm2) and high (Tm3) endotherms were attributed to the melting of primary crystals within polyamide crystalline microdomains of the copolymer. The appearance of these two melting endotherms might be somehow complicated by thermally induced Brill transition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2035–2046, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号