首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 479 毫秒
1.
采用金相显微镜、扫描电子显微镜、能谱仪和火花直读光谱仪等测试仪器,对42CrMo新氢压缩机活塞杆断裂原因进行分析. 结果表明,42CrMo钢的化学成分和金相组织均符合标准要求. 失效活塞杆属于疲劳断裂,活塞杆钢材中存在大量几何尺寸大于10 μm尖角形状聚集态氧化铝非金属夹杂物,在交变载荷作用下,这些夹杂物聚集处形成了应力集中,引起疲劳裂纹,是活塞杆断裂的主要原因.  相似文献   

2.
微孔对HDPE缺口冲击强度及断面形貌特征的影响研究   总被引:1,自引:0,他引:1  
在-196℃~+23℃的温度范围内,系统测试了微孔发泡和未发泡高密聚乙烯(HDPE)的Izod缺口冲击强度,进行了动态粘弹谱(DMA)和冲击断口系统观察分析.根据实验结果,研究了外加冲击力场作用下微发泡高密度聚乙烯变形断裂过程和机理,揭示了微孔的存在导致一定实验温度下的材料变形断裂机制发生了变化,微孔的引入一方面减小了试样(材料)的有效承载面积,另一方面导致HDPE试样芯部基体材料的应力状态改变为平面应力状态,易于在冲击载荷下产生塑性变形或在低温脆断条件下裂纹尖端钝化阻止裂纹扩展,其综合作用的结果导致微孔发泡和未发泡HDPE的Izod缺口冲击强度随实验温度的变化规律存在差异,且实验温度高于-35℃时,微孔发泡HDPE的缺口冲击强度低于未发泡的,实验温度低于-35℃后,微孔发泡HDPE的缺口冲击强度高于未发泡的.  相似文献   

3.
研究了不同Ce添加量对压铸AZ91D合金高周疲劳性能的影响。在应力比R=0.1条件下对不同Ce含量的镁合金进行高周疲劳试验,利用升降法计算合金的疲劳强度。结果表明:随着Ce的添加,AZ91D合金的组织细化,合金中孔隙的数量降低,分布趋于均匀;在循环基数Nf=1×107条件下,合金的室温疲劳强度从96.7 MPa分别提高到106.3 MPa(1%Ce)和105.5 MPa(2%Ce);疲劳裂纹萌生于合金内部的孔隙和夹杂位置,并沿着晶粒边界扩展;合金中添加Ce后,疲劳裂纹扩展区出现疲劳条纹,疲劳断口呈现出准解理和韧窝断裂的混合特征。  相似文献   

4.
对固溶+人工时效(T6)处理的挤压变形Al-0.8%Mg-0.6%Si,Al-0.8%Mg-0.6%Si-0.2%Sc和Al-0.8%Mg-0.6%Si-0.3%Er合金进行了低周疲劳试验,探讨了合金的低周疲劳变形和断裂行为.结果表明,低周疲劳变形期间,含Sc,Er合金可以呈现循环应变硬化、循环应变软化和循环稳定;添加稀土元素Sc可提高合金的循环变形抗力,且含0.2%Sc的合金在疲劳变形期间发生双系滑移;含Sc,Er合金的弹性应变幅和塑性应变幅与断裂时的载荷反向周次的关系可分别用Basquin和Coffin-Manson公式来描述,其中Al-0.8%Mg-0.6%Si-0.2%Sc合金的塑性应变幅与断裂时的载荷反向周次之间呈双线性关系;含Sc,Er合金的疲劳裂纹均是以穿晶方式萌生于试样表面,并以穿晶方式扩展.  相似文献   

5.
对聚碳酸酯在交变 持久载荷复合作用下应变与寿命研究表明 ,其疲劳 蠕变曲线与纯蠕变曲线十分相似 .加载时间周期越短和交变载荷变化越频繁 ,普弹应变阶段的斜率和应变越小 ,进入延迟弹性变形的平台应变阶段越早 .随每一次循环中的最大载荷加载保持时间延长 ,聚碳酸酯断裂寿命减小 .以最大载荷为恒载荷一直加载的纯蠕变曲线 ,平台最高 ,断裂时间最早 .而最大载荷加载作用时间为 0的纯疲劳曲线 ,平台最低 ,断裂时间最迟 .在交变 持久载荷复合作用下聚碳酸酯存在疲劳和蠕变的交互损伤 ,其断裂寿命N Nf 和 ∑t tr比纯疲劳或纯蠕变的断裂寿命低 ;断裂寿命减小 .并且 ,疲劳 蠕变的交互损伤程度与温度密切相关 .聚碳酸酯在较低温度的疲劳 蠕变交互损伤作用大于较高温度的交互损伤作用 .随温度升高 ,疲劳 蠕变断裂寿命下降是疲劳和蠕变各自的单独损伤增加所致  相似文献   

6.
橡胶在使用过程中会承受一定载荷从而导致疲劳失效,其失效源于裂纹扩展且最终可能导致材料完全断裂。本文对橡胶耐疲劳性能通用研究方法、橡胶疲劳破坏机理进行总结,并综述了机械载荷历史、填料、动态键、环境等因素对橡胶疲劳性能的影响,最后对橡胶疲劳研究面临的挑战和发展方向进行了展望。  相似文献   

7.
在ZrO2陶瓷涂层中加入适量的CeO2,使陶瓷涂层的抗热震性能得到提高,这主要是由于CeO2的加入,涂层的微小孔隙增加、涂层产生细微的网状裂纹,增加了微裂纹密度,从而降低了涂层的弹性模量,释放了涂层中的应力,提高了涂层的裂纹失稳扩展时的临界温差ΔTc,并可阻止裂纹沿单方向的快速扩展,使涂层的抗热震起裂性能和抗热震失效能力得到提高。其中,CeO2加入量为9%效果最佳,过量加入CeO2,会过早地促进裂纹的扩展、断裂,不利于提高涂层的抗热震性能。  相似文献   

8.
锂离子电池合金类负极材料比如Si, Sn, 因其理论容量远高于目前商业化石墨负极材料受到了广泛的关注. 然而, 受限于这类材料的循环稳定性, 距离其产业化仍然有一定的距离, 主要是由于其在电化学充放电过程中锂离子的嵌入和脱出产生巨大的应力而导致出现的不可修复的裂纹. 利用金属镓低熔点的物理特性, 在其熔点之上研究其脱嵌锂过程中的自修复能力. 对制备出金属镓薄膜电极研究发现, 25次充放电后, 因为固体电解质(SEI)的持续生成, 有效自修复区域降低为34 μm, 自修复区域随着循环次数的增加逐渐降低. 同时通过简单的液相分散方法制备出金属镓粉末电极, 金属镓粉末大小为3.43 μm, 尺寸小于有效自修复区域, 电化学分析显示该金属镓粉末电极前25次循环能够实现高的可逆容量和稳定的循环性能, 25次循环后的金属镓粉末电极的SEM分析显示裂纹平均尺寸大小为1 μm, 说明金属镓在液体电解液体系中的自修复能力有限. 金属镓有望用于非液态电解质体系中的裂纹修复, 比如对全固态电池中金属锂粉化的修复.  相似文献   

9.
稀土变质及热处理对耐磨铸铁冲击疲劳性能的影响   总被引:4,自引:1,他引:4  
采用金相显微镜、扫描电镜观察了经冲击疲劳试验后耐磨铸铁中碳化物的形貌、疲劳裂纹的萌生与扩展,测定了稀土含量及加热温度与裂纹的长度和裂纹扩展之间的关系曲线,在此基础上探讨了稀土变质及热处理对耐磨铸铁冲击疲劳性能的影响.结果表明: 稀土能推迟裂纹萌生的时间,降低裂纹扩展速率,提高其冲击疲劳抗力.当稀土与热处理共同作用时,效果更显著.其原因主要归于网状共晶碳化物形态与分布的改变.  相似文献   

10.
CeO2添加剂对等离子ZrO2涂层抗热震性的影响   总被引:2,自引:0,他引:2  
在ZrO2陶瓷涂层中加入适量的CeO2,使陶瓷涂层的抗热震性能得到提高,这主要是由于CeO2的加入,涂层的微小孔隙增加、涂层产生细微的网状裂纹,增加了微裂纹密度,从而降低了徐层的弹性模量,释放了涂层中的应力,提高了涂层的裂纹失稳扩展时的临界温差ΔTc,并可阻止裂纹沿单方向的快速扩展,使涂层的抗热震起裂性能和抗热震失效能力得到提高。其中,CeO2加入量为9%效果最佳,过量加入CeO2,会过早地促进裂纹的扩展、断裂,不利于提高涂层的抗热震性能。  相似文献   

11.
本文研究了动态硫化EPDM/PP热塑性弹性体的动态疲劳老化行为,考察了其力学性能的变化,并分析了产生力学性能下降的原因。实验结果表明,随着疲劳时间的延长、疲劳振幅的增大,材料的断裂强度降低,并认为疲劳过程中完全硫化的EPDM橡胶粒子和热塑性塑料PP界面处的分子链断裂、滑移导致了断裂强度的降低;紫外光的加入,加速了材料在疲劳过程的分子链断裂、滑移速率,使材料的断裂强度有更大程度的降低;在机械疲劳老化单独作用下,材料体系几乎没有发生氧化反应,而紫外光的加入,促使了机械疲劳老化过程中氧化反应的发生。  相似文献   

12.
Poly (methyl methacrylate) organic glass is used in aircraft windshield application; these structures should have better fatigue and fracture resistance to yield good service life. The tendency towards achieving these properties is lost during manufacturing process. This study aims to determine the effect of grooving on PMMA Organic glass. The grooves are manufactured using two different processes namely Micro-Milling (MM) and Laser Ablation (LA). The tribological properties of laser ablated PMMA (LA-PMMA) and micro-milled PMMA (MM-PMMA) were studied using Pin-on-disc tribometer. The grooved surface roughness of both MM-PMMA and LA-PMMA samples has decreased with increase in wear time, whereas after reaching minimum roughness the coefficient of friction has increased; due to higher adhesion between polymer and sliding metal. The tensile properties of differently machined samples have not shown significant difference; whereas the fracture toughness values were higher with LA-PMMA samples. This effect indicated LA-PMMA had greater capacity to resist crack propagation compare to MM-PMMA samples. Similarly the fatigue endurance limit was found higher with LA-PMMA compared to MM-PMMA, due to better finish of LA-PMMA. Further, the microscopic analysis of laser grooved sample before and after fracture have also shown smoother surface and less conic shapes (fracture point) compare to MM-PMMA.  相似文献   

13.
On the basis of the experimental results described in detail in the following sections an explanation of the mechanism of liquid modifier in chalk filled PP action was proposed. After concluding that liquid modifier does not change the sample morphology and crystallinity it was stated that it facilitates filler particles translocation in polymer matrix during deformation. Such translocations are the necessary condition for saturation of volume increase of the sample due to void formation in the process of polymer filler separation preserving the sample from its premature fracture. The most important physicochemical parameter of liquid modifier seems to be its molecular weight. This parameter determines liquids ability to migrate in micropore structure arising under stress and thus to act as a cracking agent. The possibility of the importance of more efficient heat dissipation in the sample was shown indicating the role of better thermal contacts in the sample in the case of modified chalk used as a filler. Such picture of mechanism of liquid modifier action leads also to two important conclusions:
  • Due to polymer filler separation by means of liquid layer no further filler particles surface processing, as in some cases, is needed.
  • The method of modification can be easily generalized for other polymers especially other polyolefins [19], [20] as physicochemical requirements for liquid are known.
  •   相似文献   

    14.
    The distribution of stress at macroscopic and molecular levels can dramatically affect mechanical properties. This paper explores both these aspects. In the first part, quenching operations for polycarbonate and polystyrene were shown to develop favorable residual stresses as well as structural alterations (as manifested by changes in density, hardness, DSC results, etc.). The changes in these glassy polymers can be accompanied by as much as an order of magnitude increase in impact strength and fatigue life. In the other phase of our study, various analytical methods were used to investigate phenomena associated with fracture in oriented semi-crystalline polymers. In the studies reported here, the combined effects of stress and environmental agents on mechanical strength of nylon, polyethylene, and Kevlar fibers were measured. These results, in conjunction with investigations of bond rupture kinetics, suggest that fracture in these materials involve thermally activated chain scission in which the activation energy is aided by stress and the chemical environment. Different mechanisms appear to dominate fracture in spherulitic forms of chemically similar polymers.  相似文献   

    15.
    In this paper, the mechanical mechanism and propagation process of crustal fracture system are studied by using the principle and method of fracture mechanics. The trendings of two pairs of the X-shaped shearing fracture networks existing widely on the crust are calculated and the main causes to form them from the earth's rotation and thermal activity are considered. After the formation of X-shaped shearing fracture system, parts of them became a closed one but parts of them became more active and propagated further or interacted on each other since the stress field changed in the whole or regionally. Based on the propagating processes of single fracture and fracture systems, the formation process of the zigzag fractures of shear-tension and shear-compression are studied. Some examples showing that the propagating processes of fracture system can be applied to the research of earthquake prediction, are also indicated in this paper.  相似文献   

    16.
    The effects of cyclic loading on tensile fracture properties of polycarbonate (PC) and the alloy of polycarbonate and acrylonitrile-butadiene-styrene (PC/ABS) are experimentally investigated in the paper. Two digital cameras are used to record simultaneously the tensile deformation of specimens and the large deformation and the necking process of these polymers are discussed. Two lateral contractions are not identical at the later tensile stages and the contraction ratios in each lateral direction are related with the tensile strains in axial direction on width and thickness surface. The curvature radiuses at the minimum section during necking process are shown. The volume increases during necking process and then decreases gradually. The yield stress and fracture stress of PC/ABS are lower than that of PC. The degradation of the fracture stress and fracture strain due to the application of cyclic loading is larger for PC than that for PC/ABS, and these can be used to explain qualitatively why PC has higher fatigue crack growth rate than PC/ABS.  相似文献   

    17.
    The fracture behavior of a core-shell rubber (CSR) modified cross-linkable epoxy thermoplastic (CET) system, which exhibits high rigidity, highT g, and low crosslink density characteristics, is examined. The toughening mechanisms in this modified CET system are found to be cavitation of the CSR particles, followed by formation of extended shear banding around the advancing crack. With an addition of only 5 wt.% CSR, the modified CET possesses a greater than five-fold increase in fracture toughness (G IC) as well as greatly improved fatigue crack propagation resistance properties, with respect to those of the neat resin equivalents. The fracture mechanisms observed under static loading and under fatigue cyclic loading are compared and discussed.  相似文献   

    18.
    This article describes fatigue crack growth experiments to investigate the degradation of the durability of polymers due to fluid environments. The degrading effect of media causing stress cracking can be observed on the fracture surfaces of tested samples by scanning electron microscopy. Strategies to improve environmental stress cracking like changes in molecular weight, orientation, toughening with rubber particles of different sizes are discussed. Fatigue crack growth experiments can be employed as a very fast and effective screening method.  相似文献   

    19.
    The effect of the preliminary orientation on the formation of crazes in poly(ethylene terephthalate) during straining in adsorption-active liquids is studied. Poly(ethylene terephthalate) is oriented by drawing at a temperature of 80°C, which is somewhat higher than its glass-transition temperature (~75°C). After orientation, samples are tested in tension in organic liquids at room temperature. At low degrees of preliminary drawing, the shear yield stress during straining in air does not increase significantly. However, the stress of craze widening rises in proportion to the degree of preliminary drawing. Thus, the orientation suppresses crazing and leads to the transition to shear flow. A model is proposed to explain the effect of orientation on crazing. According to this model, craze widening and pulling of a nonoriented polymer into the craze volume result from the formation of pores in the bases of fibrils. The formation of fibrils is caused by straining of the polymer between pores.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号