首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Krupa  Martin  Schagerl  Martin  Steindl  Alois  Troger  Hans 《Meccanica》2000,35(4):325-351
In this first part of the paper, we review methods for the investigation of stability of relative equilibria of symmetric Hamiltonian systems and explain them by means of the model problem of a rotating pendulum. For this example the modern approaches, known as energy momentum methods are compared with stability assessment by linearization and by the classical method of Routh.  相似文献   

2.
Nonlinear stability of relative equilibria of mechanical systems has been investigated during the past two decades by notable authors and has resulted in the so-called energy momentum method. Although it has numerous important engineering applications, this theory involves subtle mathematical methods such as group theory with which engineers usually are not familiar. This paper develops a simple and natural approach to the problem for the case of cyclic coordinates in the Lagrangian since many practical examples can be easily formulated in terms of cyclic coordinates. Referring to standard algebraic operations, a stability criterion for relative equilibria is derived. As a computational benefit the presented approach does not require knowledge of a system's complete kinetic energy, either for formulating steady-state equations or for checking stability. The application of the method, which is closely related to Routh's method, will be demonstrated using the example of a dumbell satellite.  相似文献   

3.
4.
In order to derive a mechanical model for the measured limit states of plate deflections in Part 1, a general elastic–viscoplastic law coupled to a geometrically non-linear shell theory is applied. Additionally, a simplified model is used to find physical explanations. Finally, similar observations about repeatedly shock wave-loaded plates from the literature can be conducted as special cases.  相似文献   

5.
In the present work, the evolution of the inelastic centre deflections of shock wave-loaded circular metal plates due to repeated loadings is studied experimentally and numerically. These displacements are compared to those of quasi-statically deformed plates loaded by a pressure equal to the peak pressure of the impulsive loading. Thereby three types of permanent centre deflections are observed: (1) The quasi-statically obtained deflection is exceeded by the middle point displacement of a dynamically loaded structure already after the first impulse and tends towards a limit state after repeated shock wave-loadings. (2) The centre deflection of the impulsively loaded plate exceeds also the quasi-statically caused deflection and does not increase after repeated impulsive loadings any more. (3) The permanent middle point displacement of a dynamically loaded plate is smaller than the deflection of a quasi-statically loaded one and tends towards the middle point displacement of the quasi-static counterpart after repeated shock wave loadings. This phenomenon is known in the literature as ‘Pseudo-shakedown’.

In Part 1 of this study the experimental observation is described, followed by a theoretical study in Part 2.  相似文献   


6.
Chloride diffusivity in cementitious materials depends on the underlying microstructure and environmental conditions. The algorithms and implementation of the multiscale lattice Boltzmann-finite element scheme for prediction of chloride diffusivity in cementitious materials was described in detail in Part I (Zhang et al., 2013). Based on the obtained microstructures and the developed multiscale modelling scheme, chloride diffusivity in cementitious materials at the micro- and meso-scales, i.e. cement paste, mortar and concrete, are estimated and presented in Part II. The influences of w/c ratio, age, chloride binding, degree of water saturation, interfacial transition zone (ITZ) and aggregate content on chloride diffusivity are investigated in a quantitative manner. The simulations are validated with experimental data obtained from literature. The results indicate that the simulated chloride diffusivity in cementitious materials at each scale shows a good agreement with experimental data. In addition, the chloride binding, degree of water saturation, ITZ and aggregate content play significant roles in the chloride diffusivity in cementitious materials. The estimated chloride diffusivity in cementitious materials in this study accounting for the evolution of microstructure and environmental conditions can be directly used as input for the service life prediction of reinforced concrete structures.  相似文献   

7.
Sequential sampling with inverse calculation is demonstrated to provide a practical and reliable method for profiling surfaces, independent of rigid-body motions. Examples are given where various arrangements of displacement sensors can provide single-sided, double-sided, and parallel profilling. Double-sided measurements also give specimen thickness, and parallel measurements give surface twist. In common with other inverse calculation methods, there is a tradeoff between achievable spatial resolution and sensitivity to measurement noise. Such sensitivity, which typically doubles the measurement noise in the computed profiles, can be minimized by appropriate choice of sensor configuration, measurement method, and use of regularization. Practical guidelines for all these features are given, together with example experimental results for four typical sensor configurations.  相似文献   

8.
In this study we consider a model of wet pressing of paper. We use the techniques and results from the first part of this paper, where a simplified model is studied in details. The model is, using suitable transformation, rewritten in the standard parabolic-hyperbolic form. Numerical solution for typical example is given and the effects of plastic deformations of paper are investigated. Finally, the model is employed to adres the problem of choosing an optimal pressing regime.  相似文献   

9.
In this paper the generation of general curvilinear co-ordinate systems for use in selected two-dimensional fluid flow problems is presented. The curvilinear co-ordinate systems are obtained from the numerical solution of a system of Poisson equations. The computational grids obtained by this technique allow for curved grid lines such that the boundary of the solution domain coincides with a grid line. Hence, these meshes are called boundary fitted grids (BFG). The physical solution area is mapped onto a set of connected rectangles in the transformed (computational) plane which form a composite mesh. All numerical calculations are performed in the transformed plane. Since the computational domain is a rectangle and a uniform grid with mesh spacings Δξ = Δη = 1 (in two-dimensions) is used, the computer programming is substantially facilitated. By means of control functions, which form the r.h.s. of the Poisson equations, the clustering of grid lines or grid points is governed. This allows a very fine resolution at certain specified locations and includes adaptive grid generation. The first two sections outline the general features of BFGs, and in section 3 the general transformation rules along with the necessary concepts of differential geometry are given. In section 4 the transformed grid generation equations are derived and control functions are specified. Expressions for grid adaptation arc also presented. Section 5 briefly discusses the numerical solution of the transformed grid generation equations using sucessive overrelaxation and shows a sample calculation where the FAS (full approximation scheme) multigrid technique was employed. In the companion paper (Part II), the application of the BFG method to selected fluid flow problems is addressed.  相似文献   

10.
The paper presents the results of experimental studies of vibrations of an elastic hose which are induced by a pulsating fluid flow. It was found that there is a possibility of parametric resonances: principal and combination associated with certain modes of vibrations. The influence of frequency and the amplitude of pulsation, average flow velocity, pressure inside pipe, the length of the hose, and the temperature on the ranges of parametric vibrations were analysed. The character of vibrations in resonance ranges was determined by showing time histories and the results of spectral analyses. A flexible hose applied in high-pressure hydraulic systems was used as an object of research. The values of basic parameters which describe the hose׳s mechanical properties were identified experimentally. The results of the experiments were compared with the results of numerical simulations conducted on the basis of the methodology proposed in Part I of this paper.  相似文献   

11.
In the first part of this work [Dallot, J., Sab, K., 2007. Limit analysis of multi-layered plates. Part I: the homogenized Love-Kirchhoff model. J. Mech. Phys. Solids, in press, doi:10.1016/j.jmps.2007.05.005], the limit analysis of a multi-layered plastic plate submitted to out-of-plane loads was studied. The authors have shown that a homogeneous equivalent Love-Kirchhoff plate can be substituted for the heterogeneous multi-layered plate, as the slenderness (length-to-thickness) ratio goes to infinity. In fact, the out-of-plane shear stresses are shown to become asymptotically negligible when compared to in-plane stresses, as the slenderness ratio goes to infinity. Actually, failure of thick multi-layered structures often occurs by shearing in the core layers and sliding at the interfaces between the layers. Both shearing and sliding are caused by the out-of-plane shear stresses. The purpose of the present paper is to build an enhanced Multi-particular Model for Multi-layered Material (M4) taking into account shear stress effects. In this model, each layer is seen as a Reissner-Mindlin plate interacting with its neighboring layers through interfaces. The proposed model is asymptotically consistent with the homogenized Love-Kirchhoff model described in the first part of the work, as the slenderness ratio goes to infinity. Kinematic and static methods for the determination of the limit load of a thick multi-layered plate which is submitted to out-of-plane distributed forces are described. The special case of multi-layered plates under cylindrical bending conditions is studied. These conditions lead to simplifications which often allow for the analytical resolution of the Love-Kirchhoff and the M4 limit analysis problems. The benefit of the proposed M4 model is demonstrated on an example. A comparison between the heterogeneous 3D model, the Love-Kirchhoff model and the M4 model is performed on a three-layer sandwich plate under cylindrical bending conditions. Finite element calculations are used to solve the 3D problem, while both the Love-Kirchhoff and the M4 problems are analytically solved. It is shown that, when the contrast between the core and the skins strengths is high, the Love-Kirchhoff model fails to capture the plastic collapse modes that cause the ruin of the sandwich plate. These modes are well captured by the M4 model which predicts limit loads that are very consistent with the limit loads predicted by the heterogeneous 3D model (the relative error is found to be smaller than 1%).  相似文献   

12.
This paper is the second one in the series of two papers devoted to detailed investigation of the response regimes of a linear oscillator with attached nonlinear energy sink (NES) under harmonic external forcing and assessment of possible application of the NES for vibration absorption and mitigation. In this paper, we study the performance of a strongly nonlinear, damped vibration absorber with relatively small mass attached to a periodically excited linear oscillator. We present a nonlinear absorber tuning procedure in the vicinity of (1:1) resonance which provides the best total system energy suppression, using analytical and numerical tools. A linear absorber is also tuned according to the same criterion of total system energy suppression as the nonlinear one. Both optimally tuned absorbers are compared under common parameters of damping, external forcing but different absorber stiffness characteristics; certain cases for which nonlinear absorber is preferable over the linear one are revealed and confirmed numerically.  相似文献   

13.
We study the steady-state three-dimensional flow which occurs in a horizontal crucible of molten metal under the action of a horizontal temperature gradient. The geometry and the boundary conditions are similar to those encountered in the Bridgman growth process of semiconductor crystals. We find that three-dimensional effects can have a dramatic influence upon the flow, which, before the onset of periodic disturbances, differs appreciably from its two-dimensional counterpart. We also investigate the sensitivity of the flow to non-symmetric disturbances.  相似文献   

14.
A new method for determining the overall behavior of composite materials comprised of nonlinear inelastic constituents is presented. Upon use of an implicit time-discretization scheme, the evolution equations describing the constitutive behavior of the phases can be reduced to the minimization of an incremental energy function. This minimization problem is rigorously equivalent to a nonlinear thermoelastic problem with a transformation strain which is a nonuniform field (not even uniform within the phases). In this first part of the study the variational technique of Ponte Castañeda is used to approximate the nonuniform eigenstrains by piecewise uniform eigenstrains and to linearize the nonlinear thermoelastic problem. The resulting problem is amenable to simpler calculations and analytical results for appropriate microstructures can be obtained. The accuracy of the proposed scheme is assessed by comparison of the method with exact results.  相似文献   

15.
Part I of this work addressed quasi-static loading of the shear compression specimen (SCS), which has been especially developed to investigate the shear dominant response of materials at various strain rates. The stress and strain states were characterized numerically. Approximations were presented to reduce the measured load,P, and displacement,d, into equivalent stress and strain . This paper addresses dynamic loading of the SCS. Several simulations were made for representative materials, whose stress-strain behavior is assumed to be rate-independent. The results show that stress wave loading induces strong oscillations in theP-d curve. However, the curve remains smooth in the gage section. The oscillations are about the quasistatic load values, so that with suitable filtering of the dynamicP-d curves, the quasi-static ones are readily recovered. Consequently, the approach that was developed for quasi-static loading of the SCS is now extended to dynamic loading situations. The average strain rate is rather constant and scales linearly with the prescribed velocity. As the plastic modulus becomes smaller, the strain rate reaches higher values. Friction at the end pieces of the specimen is also investigated, and shown to have a small overall influence on the determined mechanical characteristics. This paper thereby confirms the potential of the SCS for large strain testing of materials, using a unified approach, over a large range of strain rates in a seamless fashion.  相似文献   

16.
The modeling of anisotropic hardening, in particular for non-proportional loading paths, is a challenging task for advanced macroscopic models. The complex distortion of the yield locus is related to the activation and cross-hardening of different slip systems, depending on crystallographic orientations. These physical mechanisms can be taken into account in polycrystalline models but the computation times are enormous. The novel approach detailed in Part I (Rousselier et al., 2009) consists in: (i) drastically reducing the number of crystallographic orientations to save the computation cost, (ii) applying a parameter calibration procedure to obtain a good agreement with the experimental database. This methodology is first applied here to the anisotropic hardening in the proportional loadings of the strongly anisotropic aluminum alloy of Part I. Very good modeling is achieved with only eight crystallographic orientations. Different levels of additional hardening in biaxial proportional loading as compared to uniaxial loading can be modeled with the same polycrystalline model. For this, only the parameter calibration has to be performed with different databases. The same methodology has also been applied for the modeling of isotropic behavior. The best compromise between model accuracy and numerical cost is obtained with fourteen orientations. The deviations from isotropy are acceptable in all loading directions. Different levels of hardening in orthogonal loading: simple shear followed by simple tension, are achieved without any modification of the model equations. Only the parameter calibration has to be performed with different hardening levels in the database. FE calculations of a deep drawing test have been performed. The CPU time of the polycrystalline model is only five times larger than that with the simple von Mises model. The CPU time with texture evolution is further increased by a factor of two. The effects of texture evolution in rolling of the initially isotropic fcc material have been investigated. The resulting texture and hardening are qualitatively good.  相似文献   

17.
The collision of elongated bubbles has been studied along adiabatic glass microchannels of 509 and 790 μm internal diameters for refrigerant R-134a. The slug flow regime obtained here comes from the nucleation process inside a micro-evaporator located upstream. Using an optical measurement technique based on two lasers and two photodiodes, it was possible to determine the vapor bubble length distributions at the exit of the micro-evaporator and 70 mm downstream and thus characterize both diabatic and adiabatic bubble collisions. The database includes 412 coupled sets of distributions involving thousands of bubbles. Half of the database has been obtained under diabatic conditions and the second half under adiabatic conditions.  相似文献   

18.
19.
To date, few researchers have solved three‐dimensional free surface problems with dynamic wetting lines. This paper extends the free surface finite element method (FEM) described in a companion paper [Cairncross RA, Schunk PR, Baer TA, Sackinger PA, Rao RR. A finite element method for free surface flows of incompressible fluid in three dimensions. Part I. Boundary fitted mesh motion. International Journal for Numerical Methods in Fluids 2000; 33 : 375–403] to handle dynamic wetting. A generalization of the technique used in two‐dimensional modeling to circumvent double‐valued velocities at the wetting line, the so‐called kinematic paradox, is presented for a wetting line in three dimensions. This approach requires the fluid velocity normal to the contact line to be zero, the fluid velocity tangent to the contact line to be equal to the tangential component of web velocity, and the fluid velocity into the web to be zero. In addition, slip is allowed in a narrow strip along the substrate surface near the dynamic contact line. For realistic wetting line motion, a contact angle that varies with wetting speed is required because contact lines in three dimensions typically advance or recede at different rates depending upon location and/or have both advancing and receding portions. The theory is applied to capillary rise of static fluid in a corner, the initial motion of a Newtonian droplet down an inclined plane, and extrusion of a Newtonian fluid from a nozzle onto a moving substrate. The extrusion results are compared with experimental visualization. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Benedettini  F.  Rega  G. 《Nonlinear dynamics》1997,14(2):119-138
The nonlinear dynamics of the same experimental model of an internally resonant hanging elastic cable considered in Part I [1] are addressed here from the point of view of the global system behaviour in the control parameter space. Synthetic results of systematic response measurements, made at different amplitudes of the support motion in frequency ranges including meaningful external resonance conditions, are reported and discussed. Attention is devoted to the detection of the most robust classes of motion. Quite complicated overall pictures of regular response regions with variable contributions from different planar and nonplanar cable modes are observed, as well as several regions of quasiperiodic and chaotic responses. Sample quantitative characterizations of nonregular motions are presented. Some experimental results are also observed against the background of the nonlinear dynamic phenomena exhibited by a theoretical model of a continuous cable with four-degrees-of-freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号