首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— Three covalently-linked porphyrin hybrid dimers were synthesized, each containing a metallotetraarylporphyrin [Zn(II), Cu(II), or Ni(II)], and a free base tetraarylporphyrin. Transfer of singlet excitation energy from the metalloporphyrin center to the free base porphyrin center was determined by measuring fluorescence properties. The Zn hybrid dimer displayed excellent intramolecular transfer of energy ( 85%) from the excited singlet state of the Zn(II) chromophore to the free base chromophore. No evidence for such transfer of the excited singlet state energy was found in the Ni(II) or Cu(II) analogues. From our experimental data, the fluorescence quantum yield of the Zn hybrid dimer was the same as for the free base monomer porphyrin (0.11; Seybold and Gouterman, 1969). Thus, the covalent attachment of another fluorescent porphyrin center effectively doubled the antenna size without decreasing the quantum yield even though the fluorescence quantum yield of the Zn(II) containing monomer was substantially less (0.03, according to Seybold and Gouterman, 1969) than that of the free base porphyrin. The donor-acceptor distance and the rate constant for energy transfer were calculated using the Forster equation. Assuming random orientation, a donor-acceptor distance of 15 Å was calculated with an associated rate constant (kci) for energy transfer of 1.9 ± 109 s–1.  相似文献   

2.
双卟啉化合物的构象平衡及π-π作用研究   总被引:8,自引:2,他引:6  
制备并表征了一系列以柔韧烷氧化相连的自由双卟啉及其锌配合物,以^1H-NMR考察了烷氧链长度及锌离子对双卟啉构象平衡的影响。结果表明,双卟啉存在开放式及闭合式构象平衡,随烷氧链的增长,构象平衡由开放式向闭合式移动,当链上碳原子数为4时最有利于双卟啉形成闭合式构象。  相似文献   

3.
In this report we describe the synthesis of multichromophore arrays consisting of two Bodipy units axially bound to a Sn(IV) porphyrin center either via a phenolate (3) or via a carboxylate (6) functionality. Absorption spectra and electrochemical studies show that the Bodipy and porphyrin chromophores interact weakly in the ground state. However, steady-state emission and excitation spectra at room temperature reveal that fluorescence from both the Bodipy and the porphyrin of 3 are strongly quenched suggesting that, in the excited state, energy and/or electron transfer might occur. Indeed, as transient absorption experiments show, selective excitation of Bodipy in 3 results in a rapid decay (τ ≈ 2 ps) of the Bodipy-based singlet excited state and a concomitant rise of a charge-separated state evolving from the porphyrin-based singlet excited state. In contrast, room-temperature emission studies on 6 show strong quenching of the Bodipy-based fluorescence leading to sensitized emission from the porphyrin moiety due to a transduction of the singlet excited state energy from Bodipy to the porphyrin. Emission experiments at 77 K in frozen toluene reveal that the room-temperature electron transfer pathway observed in 3 is suppressed. Instead, Bodipy excitation in 3 and 6 results in population of the first singlet excited state of the porphyrin chromophore. Subsequently, intersystem crossing leads to the porphyrin-based triplet excited state.  相似文献   

4.
A new and general synthesis of porphyrin dimers is described. The synthesis involves the reaction of dibromoalkanes with phenolic porphyrins, such as 5(4-hydroxyphenyl)-10,15,20-tritolylporphyrin, to form σ-bromoalkyl porphyrin ethers. The latter compounds are then reacted with a second phenolic porphyrin to give porphyrin dimers. A mixed metalloporphyrin dimer has been prepared which contains both V(IV) and Cu(II). The compounds have been examined spectroscopically. The free-base porphyrin dimers show a splitting of the intense Soret band. This is interpreted as indicative of weak singlet energy transfer between the covalently linked porphyrins.  相似文献   

5.
This paper describes the results of a study of the photophysical properties of various methyl-angelicins (MA) in solvents of different polarity and proticity. The behavior of their excited singlet and triplet states was investigated by fluorometry and nanosecond laser flash photolysis. On the basis of semiempirical (ZINDO/S-CI) calculations and the solvent effect on the absorption and fluorescence properties, the lowest excited singlet state (S1) is assigned to a partially allowed π, π* state. The close lying S2 state is n,π* in nature. The efficiency of the decay pathways of S1 (fluorescence, intersystem crossing and internal conversion) strongly depends on the energy gap between the S1 and S2 states consistent with the manifestation of “proximity effect.” Thus, MA in cyclohexane decay only through S1→ S0 internal conversion, while in acetonitrile and ethanol, where the n, π* state is located at higher energy, their fluorescence and intersystem crossing increase significantly. The lowest excited triplet states (T1) were characterized in terms of their absorption spectra, decay kinetics, molar absorption coefficients and formation quantum yields. The interaction of T1 MA with molecular oxygen leads to an efficient formation of singlet oxygen, as evidenced by the appearance of characteristic IR phosphorescence centered at 1269 nm.  相似文献   

6.
Properties of the ground and excited states of methylene blue (MB) were studied in negatively charged vesicles, normal and reverse micelles and sodium chloride solutions. All these systems induce dimer formation as attested by the appearance of the dimer band in the absorption spectra (lamdaD approximately 600 nm). In reverse micelles the dimerization constant (KD) corrected for the aqueous pseudophase volume fraction is two-three orders of magnitude smaller than KD of MB in water, and it does not change when W0 is increased from 0.5 to 10. Differences in the fluorescence intensity as a function of dimer-monomer ratio as well as in the resonance light scattering spectra indicate that distinct types of dimers are induced in sodium dodecyl sulfate (SDS) micelles and aerosol-OT (sodium dioctyl sulfoxinate, AOT) reversed micelles. The properties of the photoinduced transient species of MB in these systems were studied by time-resolved near infrared (NIR) emission (efficiency of singlet oxygen generation), by laser flash photolysis (transient spectra, yield and decay rate of triplets) and by thermal lensing (amount of heat deposited in the medium). The competition between electron transfer (dye*-dye) and energy transfer (dye*-O2) reactions was accessed as a function of the dimer-monomer ratio. The lower yield of electron transfer observed for dimers in AOT reverse micelles and intact vesicles compared with SDS micelles and frozen vesicles at similar dimer-monomer ratios is related with the different types of aggregates induced by each interface.  相似文献   

7.
A set of flapping acene dimers fused with an 8π cyclooctatetraene (COT) ring showed distinct excited‐state dynamics in solution. While the anthracene dimer showed a fast V‐shaped‐to‐planar conformational change within 10 ps in the lowest excited singlet state, reminding us of extended Baird aromaticity, the tetracene dimer and the pentacene dimer underwent intramolecular singlet fission (SF) in different manners: A fast and reversible SF with a characteristic delayed fluorescence (FL), and a fast and quantitative SF, respectively. Conformational flexibility of the fused COT linkage plays an important role in these ultrafast dynamics, demonstrating the utility of the flapping molecular series as a versatile platform for designing photofunctional systems.  相似文献   

8.
Excitation-energy dependence of fluorescence intensity and fluorescence lifetime has been measured for 4-dimethylaminobenzonitrile (DMABN), 4-aminobenzonitrile (ABN), 4-diisopropylaminobenzonitrile (DIABN), and 1-naphthonitrile (NN) in a supersonic free jet. In all cases, the fluorescence yield decreases rather dramatically, whereas the fluorescence lifetime decreases only moderately for S1 (pi pi*, L(b)) excess vibrational energy exceeding about 1000 cm(-1). This is confirmed by comparison of the normalized fluorescence excitation spectrum with the absorption spectrum of the compound in the vapor phase. The result indicates that the strong decrease in the relative fluorescence yield at higher energies is due mostly to a decrease in the radiative decay rate of the emitting state. Comparison of the experimental results with the TDDFT potential energy curves for excited states strongly suggests that the decrease in the radiative decay rate of the aminobenzonitriles at higher energies is due to the crossing of the pi pi* singlet state by the lower-lying pi sigma*(C[triple bond]N) singlet state of very small radiative decay rate. The threshold energy for the fluorescence "break-off" is in good agreement with the computed energy barrier for the pi pi*/pi sigma* crossing. For NN, on the other hand, the observed decrease is in fluorescence yield at higher excitation energies can best be attributed to the crossing of the pi pi* singlet state by the pi sigma* triplet state.  相似文献   

9.
The electronic and fluorescence spectroscopic properties of a novel porphyrin-polypyridyl ruthenium(II) hybrid, [C(4)-TPP-(ip)Ru(phen)(2)](ClO(4))(2) (TPP=5,10,15,20-tetraphenylporphyrin, ip=imidazo[4,5-f][1,10]phenanthroline and phen=1,10-Phenanthroline), in which a polypyridyl ruthenium(II) moiety is linked to a porphyrin moiety by a butyl chain have been investigated and compared to its corresponding reference compounds. The studies of electronic absorption spectra have shown that there is an electronic interaction between the porphyrin moiety and the polypyridyl ruthenium(II) moiety in the hybrid. It can be found that intramolecular photoinduced electron and energy transfer processes may occur in the hybrid from the fluorescence spectra. When exciting in Soret band and Q band of porphyrin, the fluorescence quenching of the porphyrin moiety of the hybrid takes place due to electron transfer from the lowest singlet excited state (S(1)) to the appended polypyridyl rutherium(II) moiety, while the decay of S(2) (the second-excited singlet state) of the porphyrin moiety is mainly contributed to internal conversion to S(1). When exciting in MLCT band of the polypyridyl ruthenium(II) moiety, fluorescence corresponding to the polypyridyl ruthenium(II) moiety is quenched by intramolecular energy transfer from (3)MLCT of the ruthenium moiety to the lowest-energy triplet state localized on the porphyrin moiety.  相似文献   

10.
The synthesis and characterisation of a C6 hydrocarbon linked porphyrin dimer and its zinc complex is described. From fluorescence quantum yields and excited singlet and triplet state lifetimes, recorded for the dimers and the corresponding monomer species, it is suggested that the dimeric porphyrins exist in solution in open and closed conformations. The open conformations retain photophysical properties similar to those of the relevant monomeric species but the closed conformations do not fluoresce.  相似文献   

11.
The structural and electronic properties of perylene molecule, dimers, and excimers have been computationally studied. The present work represents the first systematic study of perylene molecule and dimer forms by means of long‐range corrected time‐dependent density functional theory (TDDFT) approaches. Initially, the study explores the photophysical properties of the molecular species. Vertical transitions to many excited singlet states have been computed and rationalized with different exchange‐correlation functionals. Differences between excitation energies are discussed and compared to the absorption spectrum of perylene in gas phase and diluted solution. De‐excitation energy from the relaxed geometry of the lowest excited singlet is in good agreement with the experimental fluorescence emission. Optimization of several coplanar forms of the perylene pair prove that, contrary to generalized gradient approximation (GGA) and hybrid exchange‐correlation functionals, corrected TDDFT is able to bind the perylene dimer in the ground state. Excitation energies from different dimer conformers point to dimer formation prior to photoexcitation. The fully relaxed excimer geometry belongs to the perfectly eclipsed conformation with D2h symmetry. The excimer equilibrium intermolecular distance is shorter than the separation found for the ground state, which is an indication of stronger interchromophore interaction in the excimer state. Excimer de‐excitation energy is in rather good agreement with the excimer band of perylene in concentrated solution. The study also scans the energy profiles of the ground and lowest excited states along several geometrical distortions. The nature of the interactions responsible for the excimer stabilization is explored in terms of excitonic and charge resonance contributions. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
An artificial photosynthetic reaction center consisting of a carotenoid (C), a dimesitylporphyrin (P), and a bis(heptafluoropropyl)porphyrin (P(F)), C-P-P(F) , and the related triad in which the central porphyrin has been metalated to give C-P(Zn)-P(F) have been synthesized and characterized by transient spectroscopy. These triads are models for amphipathic triads having a carboxylate group attached to the P(F) moiety; they are designed to carry out redox processes across lipid bilayers. Triad C-P-P(F) undergoes rapid singlet-singlet energy transfer between the porphyrin moieties, so that their excited states are in equilibrium. In benzonitrile, photoinduced electron transfer from the first excited singlet state of P and hole transfer from the first excited singlet state of P(F) yield the initial charge-separated state C-P(.) (+)-P(F) (.) (-). Subsequent hole transfer to the carotenoid moiety generates the final charge-separated state C(.) (+)-P-P(F) (.) (-), which has a lifetime of 1.1 mus and is formed with a quantum yield of 0.24. In triad C-P(Zn)-P(F) energy transfer from the P(Zn) excited singlet to the P(F) moiety yields C-P(Zn)-(1)P(F) . A series of electron-transfer reactions analogous to those observed in C-P-P(F) generates C(.) (+)-P(Zn)-P(F) (.) (-), which has a lifetime of 750 ns and is formed with a quantum yield of 0.25. Flash photolysis experiments in liposomes containing an amphipathic version of C-P(Zn)-P(F) demonstrate that the added driving force for photoinduced electron transfer in the metalated triad is useful for promoting electron transfer in the low-dielectric environment of artificial biological membranes. In argon-saturated toluene solutions of C-P-P(F) and C-P(Zn)-P(F) , charge separation is not observed and a considerable yield of triplet species is generated upon excitation of the porphyrin moieties. In both triads triplet energy localized in the P(F) moiety is channeled to the carotenoid chromophore by a triplet energy-transfer relay mechanism. Certain photophysical characteristics of these triads, including the sequential electron transfer and the triplet energy-transfer relay mechanism, are reminiscent of those observed in natural reaction centers of photosynthetic bacteria.  相似文献   

13.
新型β-双链桥连双卟啉的合成及光敏活性   总被引:2,自引:0,他引:2  
设计合成了一种β-双链桥连双卟啉及其Cu(Ⅱ),Ni(Ⅱ),Zn(Ⅱ)配合物,通过1HNMR,MS,IR,UV和元素分析进行了表征.以1,3-二苯基异苯并呋喃(DPBF)为猝灭剂测试了β-双链双卟啉产生单线态氧的能力;通过DNA凝胶电泳比较了其对pBR322质粒DNA的光敏切割效果;采用紫外-可见光谱滴定法研究了其与小牛胸腺DNA的相互作用.实验结果表明,光敏剂β-双链双卟啉具有较强的产生单线态氧能力,β-双链桥连使双卟啉对pBR322质粒DNA具有较好的光敏切割效果,与DNA有较强的结合能力.  相似文献   

14.
N-fused isophlorin 3 and its tautomeric phlorin forms 4 and 5, the new constitutional isomers of porphyrin which preserve the basic skeleton of their maternal N-fused porphyrin, have been identified in the course of investigation of phosphorus insertion into N-fused porphyrin 2. N-fused porphyrin reacts with PCl3 in toluene yielding phosphorus(V) N-fused isophlorin 3-P wherein the macrocycle acts as a trianionic tridentate ligand. The identical product has been formed in the reaction of N-confused porphyrin 1 and POCl3 or PCl3. The coordinating environment of phosphorus(V) in 3-P as determined by X-ray crystallography resembles a distorted trigonal pyramid with the nitrogen atoms occupying equatorial positions with the oxygen atom lying at the unique apex. Phosphorus(V) is significantly displaced by 0.732(1) A from the N3 plane. The P-N distances are as follows P-N(22) 1.664(2), P-N(23) 1.645(2), and P-N(24) 1.672(2). All P-N(pyrrolic) bond lengths are markedly shorter than the P-N distances in phosphorus porphyrins. 3-P is susceptible to proton addition at the inner C(9) carbon atom, yielding aromatic 4-P. The modified macrocycle acts as a dianionic ligand and allows the efficient 18 pi-electron delocalization pathway. Two stereoisomers affording the syn (4-P syn) and anti (4-P anti) location of the H(9) atom with respect to the oxygen atom of the PO unit have been identified by (1)H NMR. A regioselective reduction of free base N-fused porphyrin 2 with NaBH4 yielded a nonaromatic isomer of 4, that is, N-fused phlorin 5 due to an addition of a hydride to the C(15) carbon and a proton to one of the pyrrolic nitrogens. The isomer 5 reacts with PCl 3 yielding phosphorus(V) fused isophlorin 3-P. Density functional theory has been applied to model the molecular and electronic structure of porphyrin isomers 3, 4, and 5 and their phosphorus(V) complexes.  相似文献   

15.
The target donor-acceptor compound forms an acridinium-like, locally excited (LE) singlet state on illumination with blue or near-UV light. This LE state undergoes rapid charge transfer from the acridinium ion to the orthogonally sited mesityl group in polar solution. The resultant charge-transfer (CT) state fluoresces in modest yield and decays on the nanosecond time scale. The LE and CT states reside in thermal equilibrium at ambient temperature; decay of both states is weakly activated in fluid solution, but decay of the CT state is activationless in a glassy matrix. Analysis of the fluorescence spectrum allows precise location of the relevant energy levels. Intersystem crossing competes with radiative and nonradiative decay of the CT state such that an acridinium-like, locally excited triplet state is formed in both fluid solution and a glassy matrix. Phosphorescence spectra position the triplet energy well below that of the CT state. The triplet decays via first-order kinetics with a lifetime of ca. 30 micros at room temperature in the absence of oxygen but survives for ca. 5 ms in an ethanol glass at 77 K. The quantum yield for formation of the LE triplet state is 0.38 but increases by a factor of 2.3-fold in the presence of iodomethane. The triplet reacts with molecular oxygen to produce singlet molecular oxygen in high quantum yield. In sharp contradiction to a recent literature report, there is no spectroscopic evidence to indicate the presence of an unusually long-lived CT state.  相似文献   

16.
以1,6-二溴己烷为桥连试剂, 2-(1-羟基萘基)-5,10,15,20-四苯基卟啉及其Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ)配合物为原料, 合成了4个新型β,β-桥连双卟啉. 以1,3-二苯基异苯并呋喃(DPBF)为猝灭剂, 测试了双卟啉及其Ni(Ⅱ), Zn(Ⅱ)配合物在光照条件下产生单线态氧的能力, 并研究了4个双卟啉化合物在光照和无光照条件下对pBR322质粒DNA的切割能力(用凝胶电泳)和对金黄色葡萄球菌(ATCC 25923)的光敏抑菌活性. 结果表明, 新型双卟啉光敏剂具有较好光敏活性, 产生的活性氧能有效杀灭金黄色葡萄球菌.  相似文献   

17.
苯环上取代基的性质对双卟啉分子内能量转移的影响   总被引:2,自引:0,他引:2  
金属卟啉在光合作用中起重要作用,合成其聚合物并作为光合作用模拟体系研究其能量转移和电子转移过程,已成为化学领域的重要研究课题之一.用于光合作用活性中心模拟体的金属卟啉聚合物种类很多,本文参考Little方法合成2种未见报道的苯环上分别带推电子和拉电子取代基和以柔韧碳氢链相连的中位双卟啉p-ZnTPP/p-H_2TMPP和p-ZnTPP/p-H_2TCPP(图1),探索了取  相似文献   

18.
Steady state absorption and fluorescence as well as the time resolved absorption studies in the pico and subpicosecond time domain have been performed to characterize the excited singlet and triplet states of Michler's ketone (MK). The nature of the lowest excited singlet (S1) and triplet (T1) states depends on the polarity of the solvent - in nonpolar solvents they have either pure nπ * character or mixed character of nπ * and ππ * states but in more polar solvents the states have CT character. Concentration dependence of the shapes of the fluorescence as well the excited singlet and triplet absorption spectra provide the evidence for the association of the MK molecules in the ground state.  相似文献   

19.
We investigated the spectroscopy of the first excited singlet electronic state S1 of 2-phenylindene using both fluorescence excitation spectroscopy and resonantly enhanced multiphoton ionization spectroscopy. Moreover, we investigated the dynamics of the S1 state by determining state-selective fluorescence lifetimes up to an excess energy of approximately 3400 cm(-1). Ab initio calculations were performed on the torsional potential energy curve and the equilibrium and transition state geometries and normal-mode frequencies of the first excited singlet state S1 on the CIS level of theory. Numerous vibronic transitions were assigned, especially those involving the torsional normal mode. The torsional potentials of the ground and first excited electronic states were simulated by matching the observed and calculated torsional frequency spacings in a least-squares fitting procedure. The simulated S1 potential showed very good agreement with the ab initio potential calculated on the CIS/6-31G(d,p) level of theory. TDDFT energy corrections improved the match with the simulated S(1) torsional potential. The latter calculation yielded a torsional barrier of V2 = 6708 cm(-1), and the simulation a barrier of V2 = 6245 cm(-1). Ground-state normal-mode frequencies were calculated on the B3LYP/6-31G(d,p) level of theory, which were used to interpret the infrared spectrum, the FDS spectrum of the transition and hot bands of the FES spectrum. The fluorescence intensities of the nu49 overtone progression could reasonably be reproduced by considering the geometry changes upon electronic excitation predicted by the ab initio calculations. On the basis of the torsional potential calculations, it could be ruled out that the uniform excess energy dependence of the fluorescence lifetimes is linked to the torsional barrier in the excited state. The rotational band contour simulation of the transition yielded rotational constants in close agreement to the ab initio values for both electronic states. Rotational coherence signals were obtained by polarization-analyzed, time-resolved measurements of the fluorescence decay of the transition. The simulation of these signals yielded corroborating evidence as to the quality of the ab initio calculated rotational constants of both states. The origin of the anomalous intensity discrepancy between the fluorescence excitation spectrum and the REMPI spectrum is discussed.  相似文献   

20.
By means of ab initio HF methods, the ground state structures of 8-hydroxyquinoline (8-HQ) monomers and dimers were optimized using the 6-311+g* and 6-31G basis sets, respectively. The lowest singlet excited states of 8-HQ monomers and dimers have been studied by the single-excitation configuration interaction (CIS) approach at the same level. In the studies of the potential energy surface, it was found that all the stable configurations corresponded to enol form. The UV-vis and fluorescence spectra of 8-HQ monomers and dimers under a solvent effect condition were also calculated using the TD-B3LYP/6-31+G* method based on the HF- and CIS-optimized geometries. The computed absorption and fluorescence spectral characteristics for monomers and dimers were in good agreement with previously reported experimental values. The results also show that 8-HQ has very poor fluorescence in solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号