首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Turbulent opposed jet burners are an excellent test case for combustion research and model development due to the burners’ compactness, relative simplicity, and the good optical access they provide. The flow-field in the flame region depends strongly on the turbulence generation inside the nozzles, so that realistic flow simulations can only be achieved if the flow inside the nozzles is represented correctly, which must be verified by comparison to suitable experimental data. This paper presents detailed particle image velocimetry (PIV) measurements of the flow issuing from the turbulence generating plates (TGP) inside a glass nozzle. The resulting data is analyzed in terms of first and second moments, time-series, frequency spectra and phase averages. The measurements show how individual high velocity jets emerging from the TGP interact and recirculation zones are formed behind the solid parts of the TGP. Vortex shedding is observed in the jet’s shear layer were high levels of turbulent kinetic energy are generated. Time series measurements revealed periodic pulsations of the individual jets and implied a coupling between adjacent jets. The peak frequencies were found to be a function of the Reynolds-number.  相似文献   

2.
In this work, the turbulent mixing of a confined coaxial jet in air is investigated by means of simultaneous particle image velocimetry and planar laser induced fluorescence of the acetone seeded flow injection. The jet is injected into a turbulent duct flow at atmospheric pressure through a 90 ° pipe bend. Measurements are conducted in a small scale windtunnel at constant mass flow rates and three modes of operation: isothermal steady jet injection at a Dean number of 20000 (R e d =32000), pulsed isothermal injection at a Womersley number of 65 and steady injection at elevated jet temperatures of ΔT=50 K and ΔT=100 K. The experiment is aimed at providing statistically converged quantities of velocity, mass fraction, turbulent fluctuations and turbulent mass flux at several downstream locations. Stochastic error convergence over the number of samples is assessed within the outer turbulent shear layer. From 3000 samples the statistical error of time-averaged velocity and mass fraction is below 1 % while the error of Reynolds shear stress and turbulent mass flux components is in the of range 5-6 %. Profiles of axial velocity and turbulence intensity immediately downstream of the bend exit are in good agreement with hot-wire measurements from literature. During pulsed jet injection strong asymmetric growing of shear layer vortices lead to a skewed mass fraction profile in comparison with steady injection. Phase averaging of single shot PLIF-PIV measurements allows to track the asymmetric shear layer vortex evolvement and flow breakdown during a pulsation cycle with a resolution of 10°. Steady injection with increased jet temperature supports mixing downstream from 6 nozzle diameters onward.  相似文献   

3.
The effect of flow separation and turbulence on the performance of a jet pump in oscillatory flows is investigated. A jet pump is a static device whose shape induces asymmetric hydrodynamic end effects when placed in an oscillatory flow. This will result in a time-averaged pressure drop which can be used to suppress acoustic streaming in closed-loop thermoacoustic devices. An experimental setup is used to measure the time-averaged pressure drop as well as the acoustic power dissipation across two different jet pump geometries in a pure oscillatory flow. The results are compared against published numerical results where flow separation was found to have a negative effect on the jet pump performance in a laminar flow. Using hot-wire anemometry the onset of flow separation is determined experimentally and the applicability of a critical Reynolds number for oscillatory pipe flows is confirmed for jet pump applications. It is found that turbulence can lead to a reduction of flow separation and hence, to an improvement in jet pump performance compared to laminar oscillatory flows.  相似文献   

4.
5.
The present work is an experimental study of the evolutioncharacteristics of swirl in the flow in a pipe at a moderately highReynolds number and over a wide range of swirl numbers characterisingthe swirl strength. The measurements are done by 3D LDV in a speciallydesigned facility that works on the principle of refractive-indexmatching. Swirl with the well-defined distribution of a constant angularvelocity is introduced into the test section of this facility by a swirlgenerating device in which a tube bundle in the pipe rotates about thepipe axis. The measurements have been processed to yield themean-velocity vector and the Reynolds stress tensor in this flow. Ananalysis of the measured evolution characteristics brings out a dominanteffect of swirl with a solid body rotation as the annihilation ofReynolds shear streses.  相似文献   

6.
In this work we examine first the flow field of a confined jet produced by a turbulent flow in a long cylindrical pipe issuing in an abrupt angle diffuser. Second, we examine the dispersion of inertial micro-particles entrained by the turbulent flow. Specifically, we examine how the particle dispersion field evolves in the multiscale flow generated by the interactions between the large-scale structures, which are geometry dependent, with the smaller turbulent scales issued by the pipe which are advected downstream. We use Large-Eddy-Simulation (LES) for the flow field and Lagrangian tracking for particle dispersion. The complex shape of the domain is modelled using the immersed-boundaries method. Fully developed turbulence inlet conditions are derived from an independent LES of a spatially periodic cylindrical pipe flow. The flow field is analyzed in terms of local velocity signals to determine spatial coherence and decay rate of the coherent K–H vortices and to make quantitative comparisons with experimental data on free jets. Particle dispersion is analyzed in terms of statistical quantities and also with reference to the dynamics of the coherent structures. Results show that the particle dynamics is initially dominated by the Kelvin–Helmholtz (K–H) rolls which form at the expansion and only eventually by the advected smaller turbulence scales.  相似文献   

7.
Based on two large-eddy simulations (LES) of a non-reacting turbulent round jet with a nozzle based Reynolds number of 8,610 with the same configuration as the one that has recently been investigated experimentally (Gampert et al., 2012; J Fluid Mech, 2012; J Fluid Mech 724:337, 2013), we examine the scalar turbulent/non-turbulent (T/NT) interface layer in the mixture fraction field of the jet flow between ten and thirty nozzle diameters downstream. To this end, the LES—one with a coarse grid and one with a fine grid—are in a first step validated against the experimental data using the axial decay of the mean velocity and the mean mixture fraction as well as based on radial self-similar profiles of mean and root mean square values of these two quantities. Then, probability density functions (pdf) of the mixture fraction at various axial and radial positions are compared and the quality of the LES is discussed. In general, the LES results are consistent with the experimental data. However, in the flow region where the imprint of the T/NT interface layer is dominant in the mixture fraction pdf, discrepancies are observed. In a next step, statistics of the T/NT interface layer are studied, where a satisfactory agreement for the pdf of the location of the interface layer from the higher resolved LES with the experimental data is observed, while the one with the coarse grid exhibits considerable deviations. Finally, the mixture fraction profile across the interface is investigated where the same trend as for the pdf of the location is present. In particular, it is found that the sharp interface that is present in experimental studies (Gampert et al., J Fluid Mech, 2013; Westerweel et al., J Fluid Mech 631:199, 2009) is less distinct in the LES results and rather diffused in radial direction outside of the T/NT interface layer.  相似文献   

8.
基于红外热像的自由剪切湍流被动标量高阶谱分析   总被引:1,自引:0,他引:1  
利用红外热像仪对高压水射流进行了连续探测.对红外热像序列表征的标量脉动场进行双谱分析,检测湍射流的相干结构、射流不同截面内相干结构的尺度关联性以及射流不同发展阶段的特征尺度.研究表明,以红外热像为样本的全局自双谱表征了射流不同波段能分量对相干的贡献;按三列对图像采样的横断面局部互双谱给出了沿流向的大涡区、小涡区、以及各向同性湍流区的频率耦合特征;按三行对图像采样的纵向局部互双谱给出了射流的轴心线区、剪切层、空气湍流区大涡层和各向同性湍流层等各纵向断面的相干特征;通过红外热像序列的双谱分析,由流场相干结构的尺度关联性,得到了射流诱导的空气湍流场在不同发展阶段的特征尺度.  相似文献   

9.
The turbulent structure of a submerged axisymmetric impinging jet containing small gas bubbles is studied experimentally under conditions of periodic external excitation. On the basis of measuring the surface-friction pulsatory component in the jet impinging on an obstacle, the effect of the suppression of large-scale eddies at large gas volume fractions is registered. The conditions of resonant growth of coherent structures and the suppression of wide-band turbulence are determined for both the single-phase and the two-phase impinging jet. An analysis of the development of different pulsatory friction components in the impinging-jet gradient region is presented.  相似文献   

10.
We present a laboratory experimental investigation of the interaction between the turbulent flow in an open channel and the turbulent flow within its very permeable bed. The bed was composed of uniform-size spheres packed in a cubic pattern. Fluid velocities were measured by Particle Image Velocimetry (PIV), which allowed us to investigate the spatial distribution of the time-averaged flow properties in the zone where they are strongly affected by the geometry of the rough bed. We investigate the effect of bed porosity on these flow properties by comparing the results of two experimental configurations: one with an impermeable bed composed of a single layer of spheres and another with a permeable bed composed of five layers. For the latter case, PIV measurements of velocities were also carried out inside two pores adjacent to the bed surface. This data provides an insight into the mechanisms of momentum transfer between the turbulent open channel flow and the turbulent flow within its very permeable bed.  相似文献   

11.
Particle image velocimetry (PIV) has been used to investigate transitional and turbulent flow in a randomly packed bed of mono-sized transparent spheres at particle Reynolds number, \(20<{{ Re}}_{\mathrm{p}}< 3220\). The refractive index of the liquid is matched with the spheres to provide optical access to the flow within the bed without distortions. Integrated pressure drop data yield that Darcy law is valid at \({{ Re}}_{\mathrm{p}} \approx 80\). The PIV measurements show that the velocity fluctuations increase and that the time-averaged velocity distribution start to change at lower \({{ Re}}_{\mathrm{p}}\). The probability for relatively low and high velocities decreases with \({{ Re}}_{\mathrm{p}}\) and recirculation zones that appear in inertia dominated flows are suppressed by the turbulent flow at higher \({{ Re}}_{\mathrm{p}}\). Hence there is a maximum of recirculation at about \({{ Re}}_{\mathrm{p}} \approx 400\). Finally, statistical analysis of the spatial distribution of time-averaged velocities shows that the velocity distribution is clearly and weakly self-similar with respect to \({{ Re}}_{\mathrm{p}}\) for turbulent and laminar flow, respectively.  相似文献   

12.
The opposed jet configuration presents a canonical geometry suitable for the evaluation of calculation methods seeking to reproduce the impact of strain and re-distribution on turbulent transport in reacting and non-reacting flows. The geometry has the advantage of good optical access and, in principle, an absence of complex boundary conditions. Disadvantages include low frequency flow motion at high nozzle separations and comparatively low turbulence levels causing bulk strain to exceed the turbulent contribution at small nozzle separations. In the current work, fractal generated turbulence has been used to increase the turbulent strain and velocity measurements for isothermal flows are reported with an emphasis on the axis, stagnation plane and the distribution of mean and instantaneous strain rates. Energy spectra were also determined. The instrumentation comprised hot-wire anemometry and particle image velocimetry with the flows to both nozzles seeded with 1  $\upmu$ m silicon oil droplets providing a relaxation time of ? 3 $\upmu$ s. It is shown that fractal grids increase the turbulent Reynolds number range from 48–125 to 109–220 for bulk velocities from 4 to 8 m/s as compared to conventional perforated plate turbulence generators. Low frequency motion of the order 10 Hz could not be completely eliminated and probability density functions were determined for the location of the stagnation plane. Results show that the fluctuation in the position of the stagnation plane is of the order of the integral length scale, which was determined to be 3.1±0.1 mm at the nozzle exits through the use of hot-wire anemometry. Flow statistics close to the fractal plate located upstream of the nozzle exit were also determined using a transparent glass nozzle.  相似文献   

13.
Analytical expressions for mass concentration of liquid fuel in a spray are derived taking into account the effects of gas turbulence, and assuming that the influence of droplets on gas is small (intitial stage of spray development). Beyond a certain distance the spray is expected to be fully dispersed. This distance is identified with the maximum spray penetration. Then the influence of turbulence on the spray stopping distance is discussed and the rms spray penetration is computed from a trajectory (Lagrangian) approach. Finally, the problem of spray penetration is investigated in a homogeneous two-phase flow regime taking into account the dispersion of spray away from its axis. It is predicted that for realistic values of spray parameters the spray penetration at large distances from the nozzle is expected to be proportional to t 2/3 (in the case when this dispersion is not taken into account this distance is proportional to t 1/2). The t 2/3 law is supported by experimental observations for a high pressure injector. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
In this article, a numerical investigation is performed on flow and heat transfer of confined impinging slot jet, with a mixture of water and Al2O3 nanoparticles as the working fluid. Two-dimensional turbulent flow is considered and a constant temperature is applied on the impingement surface. The k ? ω turbulence model is used for the turbulence computations. Two-phase mixture model is implemented to study such a flow field. The governing equations are solved using the finite volume method. In order to consider the effect of obstacle angle on temperature fields in the channel, the numerical simulations were performed for different obstacle angles of 0° ? 60°. Also different geometrical parameters, volume fractions and Reynolds numbers have been considered to study the behavior of the system in terms of stagnation point, average and local Nusselt number and stream function contours. The results showed that the intensity and size of the vortex structures depend on jet- impingement surface distance ratio (H/W) and volume fraction. The maximum Nusselt number occurs at the stagnation point with the highest values at about H/W = 1. Increasing obstacle angle, from 15° to 60°, enhances the heat transfer rate. It was also revealed that the minimum value of average Nusselt number occurs in higher H/W ratios with decreasing the channel length.  相似文献   

15.
Local flow topologies have been identified and their interactions with the iso-scalar surfaces geometries have been investigated using the results of a three-dimensional direct numerical simulation (DNS) of a turbulent premixed methane-air flame in a piloted Bunsen burner configuration with tabulated chemistry. The universal teardrop shape of the joint probability density function (jpdf) of the second and third invariants of the velocity-gradient tensor disappears in the different flame regions under study. A ‘canonical’ vortex, which affects the fine-scale structure of the turbulent premixed flame, has been identified and analyzed at three times, differing by increments of the order of the Kolmogorov time micro-scale.  相似文献   

16.
The present work is devoted to the experimental and numerical study ofthe interaction of a turbulent plane jet with a rectangular cavity.Several flow regimes have been found to occur: the non-oscillationregime, the stable oscillation regime and an unstable oscillationregime. The first two regimes have been particularly considered. Theexperimental study has been carried out using hot wire anemometry andsome visualisations. The numerical predictions based on statisticalmodelling have been made using on the one hand the standard k– model and on the other hand a two-scales split spectrum model. The structuralproperties of the flow have been described for the different situations.For the oscillatory regime, a parametrical study allowed to determinethe influence of the jet exit location and the Reynolds number on thefrequency of the jet flapping. The one point closures have been able topredict the oscillatory regime, and in particular the two-scales modelled to improved results because better account is taken of lag effectsin unsteady non-equilibrium situations.  相似文献   

17.
This study examines the effect of fully developed turbulent flow at the exit of nozzle/injector on the trajectory and column breakup location of a liquid jet injected transverly into a gaseous crossflow. Liquid jet trajectory and column breakup for different nozzle geometries at different velocities of liquid jet and crossflow are analytically and experimentally Investigated. Shadowgraph imaging technique is used to determine the jet trajectory and breakup location of a transverse liquid jet in a uniform airflow. Particle image velocimetry (PIV) is used to measure the near-field velocity profile of a liquid jet discgarged into a quiescent atmosphere. The experimental results show a higher penetration and breakup height for the liquid jet ensuing from a nozzle with a smaller length to diameter ratio. This is due to the surface irregularities of the liquid column of a turbulent jet, which breaks up and consequently follows the cross airflow sooner. In order to capture the effect of turbulence, the analytical trajectory correlation developed in our previous studies is modified to account for the discharge coefficient of a nozzle. The discharge coefficient is estimated indirectly by comparing the liquid column trajectory predicted by the modified analytical correlation with that determined experimentally. The indirectly determined discharge coefficient is then used in the analytical correlation for predicting the breakup height of a transverse liquid jet. The results predicted using this approach are in good agreement with the experimental data of the present study at standard temperature and pressure (STP) test conditions.  相似文献   

18.
The paper presents large eddy simulations of co-annular swirling jets into an open domain. In each of the annuli a passive scalar is introduced and its transport is computed. If the exit of the pilot jet is retracted strong coherent flow structures are generated which substantially impact on the transport and mixing of the scalars. Average and instantaneous fields are discussed to address this issue. A conditional averaging technique is devised and applied to velocity and scalars. This allows to quantify the impact of the coherent structures on the mixing process.  相似文献   

19.
利用后向接收式激光多普勒测速仪(LDV)对自由湍射流进行了测量,我们对采集到的充分发展的湍流信号先求其1- 8阶的结构函数及其标度指数,结果验证了Kolm ogorov提出的标度律理论. 然后用子波变换将自由湍流脉动速度分解为多尺度湍涡结构, 研究每一个尺度湍涡速度的结构函数的标度律及其与湍涡速度的自相关函数的关系.  相似文献   

20.
One-dimensional (line) measurements of mixture fraction, temperature, and scalar dissipation in piloted turbulent partially premixed methane/air jet flames (Sandia flames C, D, and E) are presented. The experimental facility combines line imaging of Raman scattering, Rayleigh scattering, and laser-induced CO fluorescence. Simultaneous single-shot measurements of temperature and the mass fractions of all the major species (N2, O2, CH4, CO2, H2O, CO, and H2) are obtained along 7 mm segments with a nominal spatial resolution of 0.2 mm. Mixture fraction, ξ, is then calculated from the measured mass fractions. Ensembles of instantaneous mixture fraction profiles at several streamwise locations are analyzed to quantify the effect of spatial averaging on the Favre average scalar variance, which is an important term in the modeling of turbulent nonpremixed flames. Results suggest that the fully resolved scalar variance may be estimated by simple extrapolation of spatially filtered measurements. Differentiation of the instantaneous mixture fraction profiles yields the radial contribution to the scalar dissipation, χ r = 2D ξ(?ξ/?r)2, and radial profiles of the Favre mean and rms scalar dissipation are reported. Scalar length scales, based on autocorrelation of the spatial profiles of ξ and χ r , are also reported. These new data on this already well-documented series of flames should be useful in the context of validating models for sub-grid scalar variance and for scalar dissipation in turbulent flames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号