首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
顺酐均相催化加氢衍生物的研究   总被引:4,自引:2,他引:4  
刘蒲  高润雄 《分子催化》1997,11(2):149-152
  相似文献   

2.
顺酐均相催化加氢衍生物的研究Ⅰ.制琥珀酸酐的反应条件优化选择刘蒲高润雄刘省明殷元骐1)(中国科学院兰州化学物理研究所兰州730000)关键词均相催化加氢顺酐琥珀酸酐钌络合物顺丁烯二酸酐(MA)是重要的基本有机化工原料,已成为世界上仅次于醋酐和苯酐的第...  相似文献   

3.
刘蒲  刘省明 《分子催化》1998,12(1):9-14
γ-丁内酯(γ-BL)是顺酐(MA)加氢的次级衍生物。作者曾报导了顺酐加氢制琥珀酸酐的研究。这里,我们研究了不同催化剂及配体对琥珀酸酐加氢生成γ-丁内酯的反应。考察了最佳钌/三苯基膦配位催化体系,对琥珀酸酐(SA)均相催化加氢生成γ-丁内酯的反应条件:催化剂及膦配体用量、温度、压力、时间、溶液对催化反应的影响。实验表明,在钌盐为0.15mmol、P/Ru=8、120℃、3.0MPa氢压下,乙二醇二  相似文献   

4.
以RuCl3 /PPh3 为催化剂体系研究了琥珀酸酐均相催化加氢反应动力学 .结果表明当催化剂浓度小于1.0× 10 -2 mol /L ,n(PPh3 ) /n(Ru) =7,SA浓度小于 2 .2 5mol /L和反应氢压PH2 小于 2 .2 5MPa时 ,反应速率方程为R =k1[Ru][SA]PH2 ;当反应氢压PH2 大于 2 .77MPa时 ,反应速率方程为R =k2 [Ru][SA].琥珀酸酐加氢生成γ -丁内酯的活化能Ea为 85 .2kJ/mol,活化焓△H≠ 为 81.8kJ /mol  相似文献   

5.
以RuCl3 /PPh3 为催化剂体系研究了琥珀酸酐均相催化加氢反应动力学 .结果表明当催化剂浓度小于1.0× 10 -2 mol /L ,n(PPh3 ) /n(Ru) =7,SA浓度小于 2 .2 5mol /L和反应氢压PH2 小于 2 .2 5MPa时 ,反应速率方程为R =k1[Ru][SA]PH2 ;当反应氢压PH2 大于 2 .77MPa时 ,反应速率方程为R =k2 [Ru][SA].琥珀酸酐加氢生成γ -丁内酯的活化能Ea为 85 .2kJ/mol,活化焓△H≠ 为 81.8kJ /mol  相似文献   

6.
刘蒲  刘晔 《应用化学》1999,16(1):58-61
开发了一种由顺酐直接加氢高选择性及高转化率制备琥珀酸酐的新方法,研究结果表明:钯三苯基膦催化体系对顺酐加氢具有较高的反应活性.在所考察的反应条件下,此催化剂体系对琥珀酸酐的选择性为100%,无其他副产物生成.并考察了三苯基膦/钯摩尔比,反应温度,氢气压力,催化剂和顺酐浓度对顺酐催化加氢生成琥珀酸酐的影响.在反应条件为PdCl2=125×10-3mol/L,n(顺酐)/n(Pd)≤2000,n(三苯基膦)/n(Pd)=4,T=373~393K,25MPa的氢压下于乙二醇二甲醚溶剂中反应1h以上,可使顺酐的转化率大于90%.  相似文献   

7.
用各种过渡金属催化剂对顺酐均相催化加氢进行了研究。实验结果表明,对制备 丁内酯而言。RuCl3·3H2O是最活泼的催化剂,三苯基膦是最佳配体。考察了催化剂浓度、三苯基膦/ 摩尔比、反应温度和氢气压力对顺酐催化加氢的影响。通过改变反应条件,可以选择性地制备r-丁内酯,并提出了可能的反应机理。  相似文献   

8.
顺丁烯二酸酐均相加氢制琥珀酸酐和γ-丁内酯   总被引:7,自引:0,他引:7  
刘蒲  刘晔  殷元骐 《催化学报》1999,20(1):51-54
研究了不同过渡金属催化体系对顺丁烯二酸酐均相催化加氢的催化作用,结果表明,对于顺丁烯二酸酐均相催化加氢生成琥珀酸酐和γ-丁内酯,三氯化钌/三苯基膦是较佳催化剂体系,在此催化剂体系作用下,顺丁烯二酸酐催化加氢仅生成琥珀酸酐和γ-丁内酯,无其它副产物生成,还考察了溶剂,三苯基膦/钌摩尔比,反应温度、氢气压力对顺酐催化加氢生成琥珀酸酐和γ-丁内酯选择性的影响,在适当的反应条件下,顺丁烯二酸酐均相加氢可高  相似文献   

9.
以Pd/C为催化剂的松香加氢反应机理   总被引:1,自引:1,他引:0  
松香是由松树分泌的松脂经蒸馏而得,其主要成分为枞酸型树脂酸(C19H29COOH)[1]。由于枞酸型树脂酸含有共轭双键,易与大气中的氧作用,使松香的颜色加深、质变脆、热稳定性差、品级下降。松香经催化加氢反应,改变了枞酸型树脂酸的双键结构,使其趋于脂环的稳定结构,消除了松香因共  相似文献   

10.
研究了不同催化剂对琥珀酸酐加氢生成γ -丁内酯的反应 ,并考察了配体、溶剂及PPh3/Ru摩尔比对催化反应的影响。结果发现Ru络合物是最佳催化剂 ,PPh3是最佳配体 ,乙二醇二甲醚为最佳溶剂。在SA ,2 0mmol;催化剂Ru ,0 .10mmol;PPh3/Ru ,8;以乙二醇二甲醚为溶剂( 8ml) ;H2 ,3.0MPa ;反应温度为 12 0℃的反应条件下 ,γ -丁内酯的产率可达 86.5%。  相似文献   

11.
以Al2O3为载体,采用等体积浸渍法制备了一系列Ni-Cu/Al2O3催化剂,用于顺酐液相加氢反应,并结合低温N2物理吸-脱附、H2程序升温还原、H2程序升温脱附、X射线衍射、CO程序升温表面反应等表征结果,详细考察了催化剂中Cu含量对其催化性能的影响.结果表明,Cu的引入提高了活性组分Ni的分散度,促进了催化剂上C=C的加氢活性;同时,由于Ni-Cu双金属间的相互作用,明显抑制了催化剂表面C=O的加氢.当Cu含量为7%时,催化剂上顺酐加氢定向合成丁二酸酐的活性最高.在210oC,H2压力5.0MPa的条件下反应40min时,顺酐转化率与丁二酸酐选择性均达100%.  相似文献   

12.
超细负载NiO/SiO2催化剂用于顺酐选择加氢反应研究   总被引:2,自引:0,他引:2  
以正硅酸乙酯、氯化镍为原料,分别采用Sol-Gel法和浸渍法制备了NiO/SiO2和NiO/SiO2超细负载型催化剂,用TEM、TPR、XRD、XPS等手段,表征了催化剂的结构,并进行了顺酐液相选择加氢活性评价和工艺条件优化选择。结果表明,NiO/SiO2和NiO/SiO2催化剂都具有较高比表面积及大孔体积;其活性组分粒径小、分布均匀,两者都是优良的顺酐液相选择国氢催化剂,其特点是催化剂用量少,在Ni/顺酐(摩尔比)=0.0044、3.0MPa、150℃的条件下,反应3h顺酐转化率和丁二酐的选择性都在99%以上。  相似文献   

13.
顺丁烯二酸酐均相配位催化氢化反应研究   总被引:7,自引:0,他引:7  
李继平  李青仁 《分子催化》1996,10(6):413-417
研究了在室温和大气压力下,几种过渡金属络合物对顺丁烯二酸酐氢化生成琥珀酸酐的催化活性,实验结果表明,它们的催化活性顺序是:PdCl2(PhCH2CN)2〉RuCl2(PPh3)3〉PdCl2(PhCN)2〉PdCl2(PPh3)2=RhCl(PPh3)2,在所应用的反应条件下,其中催化活性最高的络合物,PdCl2(PhCH2CN)2,给出了琥珀酸酐的产率高达93.0%。  相似文献   

14.
本文就近30年来α-蒎烯的异构及α-蒎烯和马来酸酐异构/Diels-Alder反应这两类反应进行了综述。重点考查了反应所用的催化剂、反应条件并进行比较,指出加强这方面的基础研究对充分利用我国松脂资源十分有利,其发展前景不可低估。  相似文献   

15.
通过热解蔗糖/Al2O3前驱体的方法制备了炭包覆改性Al2O3(CCA)载体,并采用等体积浸渍制备了负载量17 %的镍基催化剂.对载体及相应催化剂进行了TPO-MS、N2物理吸附、TPR、XRD等测试表征,并考察了催化剂顺酐(MA)加氢合成γ-丁内酯(GBL)的反应性能.结果表明,适量炭的引入改变了载体Al2O3的表面性质,使金属-载体相互作用减弱,活性组分镍的分散度提高,催化剂在MA加氢反应中表现出高的GBL选择性.当Al2O3中引入8.9 %的炭时,催化剂表现出最高的催化活性,在210 ℃,5 MPa氢气压力下反应3 h时,MA转化率达98%以上,GBL选择性达91.71 %.  相似文献   

16.
用化学还原法制备Ni-B/siO2非晶态催化剂,用XRD、SEM等对其非晶态特征进行表征,并用于苯乙酮的催化加氢实验,讨论了加氢反应条件对苯乙酮的转化率及选择性的影响.结果表明,Ni-B/SiO2非晶态催化剂具有很高的催化活性,在80℃、氢气压力3.0MPa、反应时间5h条件下,苯乙酮的转化率为100%,其中α-苯乙醇选择性为92.1%,乙苯为4.9%,其余(环己基甲基酮和α-环己基乙醇)为3.0%;在120℃、氢气压力3.0MPa、反应时间5h的条件下,苯乙酮的转化率为100%,其中乙苯选择性为90.2%,其余(α-苯乙醇、环己基甲基酮和α-环己基乙醇)为9.8%.因此,温度改变对产物分布有极大的影响.  相似文献   

17.
Al2O3负载镍基催化剂上CO2氢甲烷化研究   总被引:3,自引:1,他引:3  
通过对Ni/Al2O3及添加CeO2的Ni/Al2O3催化剂上CO2氢甲烷化反应的研究发现,在反应过程中,该体系的催化剂上并不产生CO,添CeO2后能显著提高甲烷产率,原位漫反射红外光谱研究发现,甲烷可通过表面CO2^-物种加氢或表面甲酸盐加氢两种途径产生,且第二种途径更有效,添加 CeO2可通过在较低温度时形成较多的表面甲酸盐来提高CO2的甲烷化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号