首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the direct proton transfer (PT) from electronically excited D-luciferin to several mild bases. The fluorescence up-conversion technique is used to measure the rise and decay of the fluorescence signals of the protonated and deprotonated species of D-luciferin. From a base concentration of 0.25 M or higher the proton transfer rates to the fluoride, dihdyrogen phosphate or acetate bases are fast and comparable. The fluorescence signals are nonexponential and complex. We suggest that the fastest decay component arises from a direct proton transfer process from the hydroxyl group of D-luciferin to the mild base. The proton donor and acceptor molecules form an ion pair prior to photoexcitation. Upon photoexcitation solvent rearrangement occurs on a 1 ps time-scale. The PT reaction time constant is ~2 ps for all three bases. A second decay component of about 10 ps is attributed to the proton transfer in a contact pair bridged by one water molecule. The longest decay component is due to both the excited-state proton transfer (ESPT) to the solvent and the diffusion-assisted PT process between a photoacid and a base pair positioned remotely from each other prior to photoexcitation.  相似文献   

2.
Time-resolved emission as well as steady-state UV-vis techniques were employed to study the photoprotolytic processes that d-luciferin, the natural substrate of the firefly luciferase, undergoes in both acidic aqueous solutions and ice. The emission spectrum of D-luciferin in a 20 mM HCl aqueous solution or higher has an additional emission band at 590 nm red-shifted with respect to the strongest emission band positioned at 530 nm of the deprotonated NRO(-*) form in a pH-neutral aqueous solution. We attribute this emission band to the zwitterion form designated as (+)HNRO(-). The time-resolved emission signals show that the NRO(-*) emission band at 530 nm and the zwitterion emission band at 590 are strongly quenched by a recombination process with a proton in an acidic solution and in ice. In ice, the quenching rate is 10 times faster than in the liquid state. We attribute the fast quenching rate to the high value of the proton diffusion constant in ice.  相似文献   

3.
4.
5.
《Chemical physics letters》1985,121(6):507-512
Rate constants for the excited-state proton transfer reaction of carbazole in aqueous alkaline solution have been determined using picosecond single photon counting. Fluorescence decay measurements show that the back reaction is slow compared to the fluorescence decay time and therefore equilibrium is not attained in the excited state. The validity of a pK value for the lowest excited state determined from steady-state fluorescence measurements assuming equilibrium is discussed. It is concluded that the thermodynamic pK* value for carbazole is 10.98.  相似文献   

6.
Time-resolved and steady-state emission characterization of 10-hydroxycamptothecin reveals a rich but less complex proton-transfer behavior than its parent hydroxyquinoline. The electronic effect of the additional electron-withdrawing ring makes the excited-state both less basic and more acidic than the parent and adds to the class of high-acidity excited-state proton donors in photochemistry and photobiology.  相似文献   

7.
Excited-state proton transfer (ESPT) of pyranine (8-hydroxypyrene-1,3,6-trisulphonate, HPTS) to acetate in methanol has been studied by steady-state and time-resolved fluorescence spectroscopy. The rate constant of direct proton transfer from pyranine to acetate (k 1) is calculated to be ∼1 × 109 M−1 s−1. This is slower by about two orders of magnitude than that in bulk water (8 × 1010 M−1 s−1) at 4 M acetate.  相似文献   

8.
The excited-state double proton transfer of model DNA base pairs, 7-hydroxyquinoline dimers, in benzene has been investigated using picosecond time-resolved fluorescence spectroscopy. Upon excitation, whereas singly hydrogen-bonded noncyclic dimers do not go through tautomerization within the relaxation time of 1400 ps, doubly hydrogen-bonded cyclic dimers undergo excited-state double proton transfer on the time scale of 25 ps to form tautomeric dimers, which subsequently undergo a conformational change in 180 ps to produce singly hydrogen-bonded tautomers. The rate constant of the double proton transfer reaction is temperature-independent, showing a large kinetic isotope effect of 5.2, suggesting that the rate is governed mostly by tunneling.  相似文献   

9.
Excited-state proton transfer from the "super" photoacid 5,8-dicyano-2-naphthol to 2-butanol is faster in the enantiopure solvent than in its racemic form. The difference observed is discussed in terms of long-range order in homo- and heterodimers of 2-butanol.  相似文献   

10.
An excited-state intramolecular proton transfer (ESIPT) from the phenol OH to the 7'-carbon on the naphthyl ring in o-(1-naphthyl)phenol (3) and 1-(1'-naphthyl)-2-naphthol (4) leads to efficient (Phi = 0.1-0.2) formation of the corresponding dihydrobenzoxanthenes (5 and 7) via quinone methide intermediates. This new reaction represents a clean, efficient, and high-yielding route to benzoxanthenes and dihydrobenzoxanthenes. A related ESIPT of similar efficiency has been detected at the 2'-aromatic position in these systems, by deuterium labeling studies.  相似文献   

11.
The excited-state proton transfer and subsequent intramolecular ion pair formation of a cupreidine-derived Cinchona organocatalyst () were studied in THF-water mixtures using picosecond time-resolved fluorescence together with global analysis. Full spectral and kinetic characterization of all the fluorescent species allowed us to monitor the 3-step process for the ion pair dissociation. In the first step, proton transfer occurs through a water "wire" from the 6-hydroxyquinoline unit (excited-state acid) to the covalently bonded basic quinuclidine moiety, resulting in a hydrogen bonded ion pair. This was confirmed by the observed kinetic isotope effect in the presence of heavy water. In the second step, the formed ions are further solvated by a few solvent molecules, producing the solvent separated ion pair. Finally, a fully solvated ion pair is formed. The 5-exponential global model derived from the reaction scheme describes the experimental data very well.  相似文献   

12.
The mechanism of the NHC-catalyzed intermolecular Stetter reaction between benzaldehyde and cyclopropene has been investigated using the PCM-M062X/6-311++G(3df,2p)//M062X/6-31+G(d,p) level of DFT. Compared to the direct reaction, a substantial reduction in the activation free energy by 10.6–14.4 kcal/mol is observed when the reaction is performed in the presence of water, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The bases promote the proton transfer step of the reaction to yield the Breslow intermediate. An early concerted transition state has been located for the stereocontrolling C–C bond formation step (ΔG# = 26.6 kcal/mol) which is used to explain the diastereomeric ratio observed in the experiment.  相似文献   

13.
Excited-state proton transfer (ESPT) from pyranine (8-hydroxypyrene-1,3,6-trisulfonate, HPTS) to acetate has been studied by picosecond and femtosecond emission spectroscopy in gamma-cyclodextrin (gamma-CD) and 2-hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) cavities. In both the CDs, ESPT from HPTS to acetate is found to be very much slower (90 and 200 ps) than that in bulk water (0.15 and 6 ps). From molecular modeling, it is shown that in the cyclodextrin cavity the acetate is separated from the OH group of HPTS by water bridges. As a result, proton transfer in the cavity requires rearrangement of the hydrogen-bond network involving the cyclodextrin. This is responsible for the marked slowdown of ESPT. ESPT of HPTS in substituted gamma-CD is found to be slower than that in the unsubstituted one. This is attributed to the hydroxypropyl groups, which prevent close approach of acetate to HPTS.  相似文献   

14.
The excited-state double proton transfer of model DNA base pairs, 7-azaindole (7AI) dimers, is explored in a low-temperature organic glass of n-dodecane using picosecond time-resolved fluorescence spectroscopy. Reaction mechanisms are found to depend on the conformations of 7AI dimers at the moment of excitation; whereas planar conformers tautomerize rapidly (<10 ps), twisted conformers undergo double proton transfer to form tautomeric dimers on the time scale of 250 ps at 8 K. The proton transfer is found to consist of two orthogonal steps: precursor-configurational optimization and intrinsic proton transfer via tunneling. The rate is almost isotope independent at cryogenic temperatures because configurational optimization is the rate-determining step of the overall proton transfer. This optimization is assisted by lattice vibrations below 150 K or by librational motions above 150 K.  相似文献   

15.
It is shown by use of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry that photoexcitation of protonated naphthalene by visible laser light of 488 nm can effect a proton transfer from this ion to acetonitrile. The reaction of the ground state reaction partners is endoergic by 31 kJ/mol.  相似文献   

16.
The excited-state proton-transfer dynamics of 7-azaindole occurring in the water nanopools of reverse micelles has been investigated by measuring time-resolved fluorescence spectra and kinetics, as well as static absorption and emission spectra, with varying water content and isotope. 7-Azaindole molecules are found to exist in the bound-water regions of reverse micelles. The rate constant and the kinetic isotope effect of proton transfer are smaller than those in bulk water although both increase with the size of the water nanopool. The retardation of proton transfer in the bound regions is attributed to the increased free energy of prerequisite solvation to form a cyclically H-bonded 1:1 7-azaindole/water complex.  相似文献   

17.
Zimmerman HE  Cheng J 《Organic letters》2005,7(13):2595-2597
[reaction: see text] Proton transfer in ketonization of enolates is a critical step in a myriad of organic reactions. Its stereochemistry has been the object of our studies since we reported kinetic protonation from the less hindered face of the molecule under kinetic control some decades ago. Very recently, we have succeeded in reversing the stereochemistry using 2-pyridyl groups to deliver the proton. We now report intramolecular delivery by other moieties and control of intramolecular versus intermolecular proton delivery.  相似文献   

18.
The reaction dynamics for a model phenol-amine proton transfer system in a confined methyl chloride solvent have been simulated by mixed quantum-classical molecular dynamics. In this approach, the proton vibration is treated quantum mechanically (and adiabatically), while the rest of the system is described classically. Nonequilibrium trajectories are used to determine the proton transfer reaction rate constant. The reaction complex and methyl chloride solvent are confined in a smooth, hydrophobic spherical cavity, and radii of 10, 12, and 15 A have been considered. The effects of the cavity radius and the heavy atom (hydrogen bond) distance on the reaction dynamics are considered, and the mechanism of the proton transfer is examined in detail by analysis of the trajectories.  相似文献   

19.
Steady-state and time-resolved emission techniques were employed to study the photoprotolytic cycle of an excited photoacid in ice in the presence of a low concentration of a weak base-like F(-). In previous studies we found that the photoprotolytic cycle in methanol-doped ice (1% mol fraction) is too slow to be observed at temperatures below 190 K. In this study we found that at temperatures below 240 K an additional proton-transfer process occurs in ice doped with 10 mM KF. We attributed this reaction to the creation of a mobile L-defect by F(-) ions. We used a diffusion-assisted reaction model, based on the Debye-Smoluchowski equation, to account for the direct reaction of the L-defect with the excited photoacid at temperatures below T < 240 K. Below 160 K the spectroscopic properties as well as the photoprotolytic cycle change dramatically. We propose that below 160 K the sample enters a new phase. The excited-state proton-transfer (ESPT) process was observed and followed down to a liquid nitrogen temperature of approximately 78 K. In the low-temperature phase the ESPT rate is almost twice as much as at 180 K and the temperature dependence of the rate is very small. The kinetic isotope effect of the ESPT at the low-temperature phase is small of about 1.3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号