首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Random coil chemical shifts are commonly used to detect secondary structure elements in proteins in chemical shift index calculations. While this technique is very reliable for folded proteins, application to unfolded proteins reveals significant deviations from measured random coil shifts for certain nuclei. While some of these deviations can be ascribed to residual structure in the unfolded protein, others are clearly caused by local sequence effects. In particular, the amide nitrogen, amide proton, and carbonyl carbon chemical shifts are highly sensitive to the local amino acid sequence. We present a detailed, quantitative analysis of the effect of the 20 naturally occurring amino acids on the random coil shifts of (15)N(H), (1)H(N), and (13)CO resonances of neighboring residues, utilizing complete resonance assignments for a set of five-residue peptides Ac-G-G-X-G-G-NH(2). The work includes a validation of the concepts used to derive sequence-dependent correction factors for random coil chemical shifts, and a comprehensive tabulation of sequence-dependent correction factors that can be applied for amino acids up to two residues from a given position. This new set of correction factors will have important applications to folded proteins as well as to short, unstructured peptides and unfolded proteins.  相似文献   

2.
NMR chemical shifts (CSs: δN(NH), δC(α), δC(β), δC', δH(NH), and δH(α)) were computed for the amino acid backbone conformers (α(L), β(L), γ(L), δ(L), ε(L), α(D), γ(D), δ(D), and ε(D) [Perczel et al., J Am Chem Soc 1991, 113, 6256]) modeled by oligoalanine structures. Topological differences of the extended fold were investigated on single β-strands, hairpins with type I and II β-turns, as well as double- and triple-stranded β-sheet models. The so-called "capping effect" was analyzed: residues at the termini of a homoconformer sequence unit usually have different CSs than the central residues of an adequately long homoconformer model. In heteroconformer sequences capping effect ruins the direct applicability of several chemical shift types (δH(NH), δC', and δN(NH)) for backbone structure determination of the parent residue. Experimental δH(α), δC(α), and δC(β) values retrieved from protein database are in good agreement with the relevant computed data in the case of the common backbone conformers (α(L), β(L), γ(L), and ε(L)), even though neighboring residue effects were not accounted for. Experimental and computed ΔδH(α)-ΔδC(α), ΔδH(α)-ΔδC(β), and ΔδC(α)-ΔδC(β) maps give qualitatively the same picture, that is, the positions of the backbone conformers relative to each other are very similar. This indicates that the H(α), C(α), and C(β) chemical shifts of alanine depend considerably on the backbone fold of the parent residue also in proteins. We provide tabulated CSs of the chiral amino acids that may predict the various structures of the residues.  相似文献   

3.
In this study, we report nearest neighbor residue effects statistically determined from a chemical shift database. For an amino acid sequence XYZ, we define two correction factors, Delta((X)Y)n,s and Delta(Y(Z))n,s, representing the effects on Y's chemical shifts from the preceding residue (X) and the following residue (Z), respectively, where X, Y, and Z are any of the 20 naturally occurring amino acids, n stands for (1)H(N), (15)N, (1)H(alpha), (13)C(alpha), (13)C(beta), and (13)C' nuclei, and s represents the three secondary structural types beta-strand, random coil, and alpha-helix. A total of approximately 14400 Delta((X)Y)n,s and Delta(Y(Z))n,s, representing nearly all combinations of X, Y, Z, n, and s, have been quantitatively determined. Our approach overcomes the limits of earlier experimental methods using short model peptides, and the resulting correction factors have important applications such as chemical shift prediction for the folded proteins. More importantly, we have found, for the first time, a linear correlation between the Delta((X)Y)n,s (n = (15)N) and the (13)C(alpha) chemical shifts of the preceding residue X. Since (13)C(alpha) chemical shifts of the 20 amino acids, which span a wide range of 40-70 ppm, are largely dominated by one property, the electron density of the side chain, the correlation indicates that the same property is responsible for the effect on the following residue. The influence of the secondary structure on both the chemical shifts and the nearest neighbor residue effect are also investigated.  相似文献   

4.
We have obtained the carbon-13 nuclear magnetic resonance spectra of a series of tryptophan-containing peptides and model systems, together with their X-ray crystallographic structures, and used quantum chemical methods to predict the (13)C NMR shifts (or shieldings) of all nonprotonated aromatic carbons (C(gamma), C(delta 2) and C(epsilon 2). Overall, there is generally good accord between theory and experiment. The chemical shifts of Trp C(gamma) in several proteins, hen egg white lysozyme, horse myoglobin, horse heart cytochrome c, and four carbonmonoxyhemoglobins, are also well predicted. The overall Trp C(gamma) shift range seen in the peptides and proteins is 11.4 ppm, and individual shifts (or shieldings) are predicted with an rms error of approximately 1.4 ppm (R value = 0.86). Unlike C(alpha) and N(H) chemical shifts, which are primarily a function of the backbone phi,psi torsion angles, the Trp C(gamma) shifts are shown to be correlated with the side-chain torsion angles chi(1) and chi(2) and appear to arise, at least in part, from gamma-gauche interactions with the backbone C' and N(H) atoms. This work helps solve the problem of the chemical shift nonequivalences of nonprotonated aromatic carbons in proteins first identified over 30 years ago and opens up the possibility of using aromatic carbon chemical shift information in structure determination.  相似文献   

5.
The 1H NMR chemical shifts and the spin-spin coupling constants of the non-exchangeable protons of the N-terminal 13-residue C-peptide of ribonuclease A, obtained by cleavage of the enzyme with cyanogen bromide, have been measured in a 5 mM solution in D2O (pH 3.0, 24°C) at 360 MHz. The titration parameters for end groups (Lys-1 and homo-Ser-13) and side chains (Lys-1, Glu-2, Lys-7, Glu-9 and His-12) have been determined. The chemical shifts, their temperature coefficients and the vicinal coupling constants, 3J(HNCH-α), for the exchangeable NH protons have been measured in a 5 mM solution in D2O/H2O (1:9 v/v) at pH 3.0. An assignment of observed signals to individual residue protons based on characteristic shifts, standard double resonance experiments, spectral simulations and titration shifts is proposed. All experimental evidence indicates that under the conditions studied the C-peptide is in a random coil form.  相似文献   

6.
A sensitive 3D NMR pulse scheme, (H)C(CA)NH-COSY, is presented for the assignment of (13)C(delta)(1) Ile chemical shifts in large perdeuterated, methyl-protonated proteins. The nonlinearity of branched amino acids, such as Ile, significantly degrades the quality of TOCSY schemes which transfer magnetization from methyl carbons to the backbone (13)C(alpha) positions, and in applications to high molecular weight proteins (correlation times on the order of 40-50 ns), this compromises the sensitivity of spectra used for methyl assignment. The experiment presented utilizes COSY-based transfer steps and refocuses undesirable (13)C-(13)C scalar couplings that degrade the efficiency of TOCSY transfers. The (H)C(CA)NH-COSY scheme is tested on an (15)N,(13)C,(2)H-[Leu, Val, Ile (delta 1 only)]-methyl-protonated maltose binding protein (MBP)/beta-cyclodextrin complex at 5 degrees C (molecular tumbling time 46 +/- 2 ns), facilitating the assignment of (13)C(delta 1) chemical shifts for 18 of the 19 Ile residues for which backbone assignments were previously obtained. Both sensitivity and resolution of the resulting spectra are shown to be significantly better than those for a similar TOCSY-based approach.  相似文献   

7.
We report the first solid-state NMR, crystallographic, and quantum chemical investigation of the origins of the 13C NMR chemical shifts of the imidazole group in histidine-containing dipeptides. The chemical shift ranges for Cgamma and Cdelta2 seen in eight crystalline dipeptides were very large (12.7-13.8 ppm); the shifts were highly correlated (R2= 0.90) and were dominated by ring tautomer effects and intermolecular interactions. A similar correlation was found in proteins, but only for buried residues. The imidazole 13C NMR chemical shifts were predicted with an overall rms error of 1.6-1.9 ppm over a 26 ppm range, by using quantum chemical methods. Incorporation of hydrogen bond partner molecules was found to be essential in order to reproduce the chemical shifts seen experimentally. Using AIM (atoms in molecules) theory we found that essentially all interactions were of a closed shell nature and the hydrogen bond critical point properties were highly correlated with the N...H...O (average R2= 0.93) and Nepsilon2...H...N (average R2= 0.98) hydrogen bond lengths. For Cepsilon1, the 13C chemical shifts were also highly correlated with each of these properties (at the Nepsilon2 site), indicating the dominance of intermolecular interactions for Cepsilon1. These results open up the way to analyzing 13C NMR chemical shifts, tautomer states (from Cdelta2, Cepsilon1 shifts), and hydrogen bond properties (from Cepsilon1 shifts) of histidine residue in proteins and should be applicable to imidazole-containing drug molecules bound to proteins, as well.  相似文献   

8.
An efficient approach to NMR assignments in intrinsically disordered proteins is presented, making use of the good dispersion of cross peaks observed in [15N,13C′]‐ and [13C′,1HN]‐correlation spectra. The method involves the simultaneous collection of {3D (H)NCO(CAN)H and 3D (HACA)CON(CA)HA} spectra for backbone assignments via sequential HN and Hα correlations and {3D (H)NCO(CACS)HS and 3D (HS)CS(CA)CO(N)H} spectra for side‐chain 1H and 13C assignments, employing sequential 1H data acquisitions with direct detection of both the amide and aliphatic protons. The efficacy of the approach for obtaining resonance assignments with complete backbone and side‐chain chemical shifts is demonstrated experimentally for the 61‐residue [13C,15N]‐labelled peptide of a voltage‐gated potassium channel protein of the Kv1.4 channel subunit. The general applicability of the approach for the characterisation of moderately sized globular proteins is also demonstrated.  相似文献   

9.
Fragment density functional theory (DFT) calculation of NMR chemical shifts for several proteins (Trp-cage, Pin1 WW domain, the third IgG-binding domain of Protein G (GB3) and human ubiquitin) has been carried out. The present study is based on a recently developed automatic fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach but the solvent effects are included by using the PB (Poisson-Boltzmann) model. Our calculated chemical shifts of (1)H and (13)C for these four proteins are in excellent agreement with experimentally measured values and represent clear improvement over that from the gas phase calculation. However, although the inclusion of the solvent effect also improves the computed chemical shifts of (15)N, the results do not agree with experimental values as well as (1)H and (13)C. Our study also demonstrates that AF-QM/MM calculated results accurately reproduce the separation of α-helical and β-sheet chemical shifts for (13)C(α) atoms in proteins, and using the (1)H chemical shift to discriminate the native structure of proteins from decoys is quite remarkable.  相似文献   

10.
The full (1)H and (13)C NMR chemical shift assignment of 2α-methyl-17α(H),21β(H)-hopane is presented. This compound is formed in mature sediments from biogenic sources of 2β-methyl-17β(H),21β(H)-hopanoids, which include several cyanobacteria. In addition, full (1)H and (13)C NMR chemical shift data of all four 17,21 isomers of 3β-methylhopane have been assigned. The thermodynamically most stable 3β-configuration corresponds to that found in bacterial sources. The data presented here suggest minor corrections to the (13)C chemical assignments reported earlier for 17α(H)-hopanes. Moreover, spectral evidence indicates an unexpected ring-D boat conformation of 17α(H),21α(H)-hopanes, which may serve to explain the steric strain reported for this isomer.  相似文献   

11.
Knowledge of chemical shift-structure relationships could greatly facilitate the NMR chemical shift assignment and structure refinement processes that occur during peptide/protein structure determination via NMR spectroscopy. To determine whether such correlations exist for polar side chain containing amino acid residues the serine dipeptide model, For-L-Ser-NH(2), was studied. Using the GIAO-RHF/6-31+G(d) and GIAO-RHF/TZ2P levels of theory the NMR chemical shifts of all hydrogen ((1)H(N), (1)H(alpha), (1)H(beta1), (1)H(beta2)), carbon ((13)C(alpha), (13)C(beta), (13)C') and nitrogen ((15)N) atoms have been computed for all 44 stable conformers of For-L-Ser-NH(2). An attempt was made to establish correlation between chemical shift of each nucleus and the major conformational variables (omega(0), phi, psi, omega(1), chi,(1) and chi(2)). At both levels of theory a linear correlation can be observed between (1)H(alpha)/phi, (13)C(alpha)/phi, and (13)C(alpha)/psi. These results indicate that the backbone and side-chain structures of For-L-Ser-NH(2) have a strong influence on its chemical shifts.  相似文献   

12.
Structural studies of HIV‐1 Gag, the primary structural polyprotein involved in retroviral assembly, have been challenging, owing to its flexibility and conformational heterogeneity. Using residual dipolar couplings, we show that the four structural units of the capsid (CA)–spacer peptide 1 (SP1)–nucleocapsid (NC) fragment of HIV‐1 Gag (namely, the N‐ and C‐terminal domains of capsid, and the N‐ and C‐terminal Zn knuckles of nucleocapsid) have the same structures as their individually isolated counterparts, and tumble semi‐independently of one another in the absence of nucleic acids. Nucleic acids bind exclusively to the nucleocapsid domain and fix the orientation of the two Zn knuckles relative to one another so that the nucleocapsid domain/nucleic acid complex behaves as a single structural unit. The low 15N–{1H} heteronuclear NOE values (≤0.4), the close to zero values for the residual dipolar couplings of the backbone amides, and minimal deviations from random‐coil chemical shifts for the C‐terminal tail of capsid and SP1, both in the absence and presence of nucleic acids, indicate that these regions are intrinsically disordered in the context of CA–SP1–NC.  相似文献   

13.
Histidine structure and chemistry lie at the heart of many enzyme active sites, ion channels, and metalloproteins. While solid-state NMR spectroscopy has been used to study histidine chemical shifts, the full pH dependence of the complete panel of (15)N, (13)C, and (1)H chemical shifts and the sensitivity of these chemical shifts to tautomeric structure have not been reported. Here we use magic-angle-spinning solid-state NMR spectroscopy to determine the (15)N, (13)C, and (1)H chemical shifts of histidine from pH 4.5 to 11. Two-dimensional homonuclear and heteronuclear correlation spectra indicate that these chemical shifts depend sensitively on the protonation state and tautomeric structure. The chemical shifts of the rare π tautomer were observed for the first time, at the most basic pH used. Intra- and intermolecular hydrogen bonding between the imidazole nitrogens and the histidine backbone or water was detected, and N-H bond length measurements indicated the strength of the hydrogen bond. We also demonstrate the accurate measurement of the histidine side-chain torsion angles χ(1) and χ(2) through backbone-side chain (13)C-(15)N distances; the resulting torsion angles were within 4° of the crystal structure values. These results provide a comprehensive set of benchmark values for NMR parameters of histidine over a wide pH range and should facilitate the study of functionally important histidines in proteins.  相似文献   

14.
Chemical shielding anisotropy tensors have been determined for all twenty-seven characteristic conformers of For-L-Val-NH2 using the GIAO-RHF formalism with the 6-31 + G* and TZ2P basis sets. The individual chemical shifts and their conformational averages have been compared to their experimental counterparts taken from the BioMagnetic Resonance Bank (BMRB). At the highest level of theory applied, for all nuclei but the amide proton, deviations between statistically averaged theoretical and experimental chemical shifts are as low as 1-3%. Correlated chemical shift plots of selected nuclei, as function of the respective phi, psi, chi1, and chi2 torsional angles, have been generated. On two-dimensional chemical shift-chemical shift plots, for example, 1H(NH)-15N(NH) and 15N(NH)-13Calpha, regions corresponding to major conformational clusters have been identified, providing a basis for the quantitative identification of conformers from NMR shift data. Experimental NMR resonances of nuclei of valine residues have been deduced from 18 selected proteins, resulting in 93 1Halpha-13Calpha chemical shift pairs. These experimental results have been compared to relevant ab initio values revealing remarkable correlation between the two sets of data. Correlations of 1Halpha and 13Calpha values with backbone conformational parameters (phi and psi) have also been found for all pairs (e.g. 1Halpha/phi and 13Calpha/phi) but 1Halpha/psi. Overall, the appealing idea of establishing backbone folding of proteins by employing chemical shift information alone, obtained from selected multiple-pulse NMR experiments (e.g. 2D-HSQC, 2D-HMQC, and 3D-HNCA), has received further support.  相似文献   

15.
通过分析在H2O和D2O中采集,DQF-COSY,TOCSY和NOESY等二维核磁共振波谱鉴定了细胞色素b5定点突变体V45H(残基Val^45突变为His^45)的大多数氨基酸残基的质子自旋系统,通过解析NOESY谱中的dNN(i,i+1),dαN(i,i+1),dαN(i,i+2),dαN(i,i+3),dαβ(i,i+3)和dβN(i,i+1)等NOE相关,完成了其序列特异性归属以及主链和侧链质子共振信号的全归属。突变体V45H的二级结构分析表明残基Val^45突变为His^45对分子的整体折叠影响不大。但是,与野生型细胞色素b5相比较,突变体V45H主链酰胺质子的化学位移指数提示突变使其血红素疏水腔的微环境受到扰动。以上实验结果为进一步测定V45H的溶液结构和分析残基Val^45在蛋白质中的作用提供了基础。  相似文献   

16.
醇是一类重要的有机溶剂,对其结构和性质的研究已有很长历史。由于OH的存在,醇分子间存在着较强的氢键缔合作用,使其结构变得复杂,因而较难对它得到一个很清楚的认识。用NMR方法研究氢键也有几十年历史。早在五十年代,Arnold,Becker等就用~1HNMR研究了EtOH在CCl_4中的行为,测量了化学位移随浓度的变化。Becker认为当醇浓度很稀时,体系中只存在单体-二聚体平衡,井结合IR数据求得了平衡常数及缔合物位移。有  相似文献   

17.
NMR--chemical shift structure correlations were investigated by using GIAO-RB3LYP/6-311++G(2d,2p) formalism. Geometries and chemical shifts (CSI values) of 103 different conformers of N'-formyl-L-histidinamide were determined including both neutral and charged protonation forms. Correlations between amino acid torsional angle values and chemical shifts were investigated for the first time for an aromatic and polar amino acid residue whose side chain may carry different charges. Linear correlation coefficients of a significant level were determined between chemical shifts and dihedral angles for CSI[(1)H(alpha)]/phi, CSI[(13)C(alpha)]/phi, and CSI[(13)C(alpha)]/psi. Protonation of the imidazole ring induces the upfield shift of CSI[(13)C(alpha)] for positively charged histidines and an opposite effect for the negative residue. We investigated the correspondence of theoretical and experimental (13)C(alpha), (13)C(beta), and (1)H(alpha) chemical shifts and the nine basic conformational building units characteristic for proteins. These three chemical shift values allow the identification of conformational building units at 80% accuracy. These results enable the prediction of additional regular secondary structural elements (e.g., polyProlineII, inverse gamma-turns) and loops beyond the assignment of chemical shifts to alpha-helices and beta-pleated sheets. Moreover, the location of the His residue can be further specified in a beta-sheet. It is possible to determine whether the appropriate residue is located at the middle or in a first/last beta-strand within a beta-sheet based on calculated CSI values. Thus, the attractive idea of establishing local residue specific backbone folding parameters in peptides and proteins by employing chemical shift information (e.g., (1)H(alpha) and (13)C(alpha)) obtained from selected heteronuclear correlation NMR experiments (e.g., 2D-HSQC) is reinforced.  相似文献   

18.
(1)H, (19)F, (13)C, (15)N, and (17)O NMR chemical shifts and (1)H-(1)H, (1)H-(19)F, (1)H-(13)C, (19)F-(13)C, and (19)F-(15)N coupling constants are reported for 2-(trifluoromethyl)-2-oxazoline.  相似文献   

19.
The pseudoguaianolide inuchinenolide C and the eudesmanolide pulchellin C have been isolated for the first time from the flower heads and leaves ofInula caspica Blume, and their spatial structures have been established by an x-ray structural experiment as 2α,6β-diacetoxy-6α-hydroxy-1α,7α(H),8β,10β(H)-pseudoguai-11(13)-en-8,12-olide and 2α,3β-dihydroxy-5β,7α,8α(H)-eudesma-4(15),11(13)-dien-8,12-olide, respectively.  相似文献   

20.
The (13)C chemical shifts measured for designed β-hairpins indicate that the structuring shifts (upfield for Cα and C', downfield for Cβ) previously reported as diagnostic for β-structuring in proteins appear only at the H-bonded strand residues. The resulting periodicity of structuring shift magnitudes is not, however, a consequence of H-bonding status; rather, it reflects a previously unrecognized alternation in the backbone torsion angles of β-strands. This feature of hairpins is also likely to be present in proteins. The study provides reference values for the expectation shifts for (13)C sites in β-structures that should prove useful in the characterization of the folding equilibria of β-sheet models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号