首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of alpha-chymotrypsin to cleave covalently bound N-acetyl- l-tryptophan (Ac-Trp-OH) from the surfaces of aminopropylated controlled pore glass (CPG) and the polymer PEGA 1,900 was investigated. Oligoglycine spacer chains were used to present the covalently attached Ac-Trp-OH substrate to the aqueous enzyme. In the absence of the oligoglycine spacer chain, the rate of release was relatively slow, especially from the PEGA 1,900. These slow rates reflect the position of the amino group to which Ac-Trp-OH is covalently attached. On the glass there was a clear optimum with a chain of four glycine residues. For PEGA 1,900 there is no real apparent change beyond two glycine residues. The decline in rate beyond these optima are a possible result of changes in oligoglycine structure. Comparing different surface loadings of bound substrate the rate of release of Ac-Trp-OH from CPG with a pore diameter of 1,200 A was optimal when using 83% of the maximum that can be coupled, then fell again at higher loading. The rate of Ac-Trp-OH release from CPG was the same for surface coverages of 0.4 and 1.0. The introduction of permanent surface charges on CPG 1,200 exhibits a distinct influence on enzymatic cleavage with an increase in the rate of biocatalysis at the surface. Optimal presentation of covalently immobilized substrate on different supports by use of appropriate linkers leads to favorable biocatalysis from the support.  相似文献   

2.
Adsorption of randomly branched polyelectrolytes, "hairy" particles and internally structured macromolecules, collectively denoted as heterogeneously charged nanoparticles, on charged surfaces is important in many technological and natural processes. In this paper, we will focus on (1) the charge regulation of both the nanoparticle and the surface and (2) the surface complexation between the particle functional groups and the surface sites and will theoretically study the adsorption using the extended surface complexation approach. The model explicitly considers the electrochemical potential of a nanoparticle with an average (smeared-out) structure and charge both in bulk solution and on the surface to obtain the equilibrium adsorption. The chemical heterogeneity of the particle is described by a distribution of the protonation constant. Detailed analysis of the chemical potential of the adsorbed nanoparticle reveals that the pH and salt dependence of the adsorption can be largely explained by the balance between an energy gain resulting from the particle and surface charge regulation and the surface complexation and an energy loss from the unfavorable interparticle electrostatic repulsion close to the surface. This conclusion is also supported by the strong impacts that the chemical heterogeneity of the particle functional groups, the magnitude of the surface complexation, the number of the functional groups, and the size of the particle have on the adsorption.  相似文献   

3.
4.
The adsorption behavior of a low charge density cationic polyelectrolyte to cellulosic fibers has been studied. Cationic dextran served as a model polyelectrolyte, as it can be prepared over a range in molecular mass and charge density. The adsorption behavior of the cationic dextran was measured in electrolyte-free conditions using polyelectrolyte titration techniques. By fluorescent labeling the cationic dextran, the extent to which adsorption occurs inside the porous structure was further determined by fluorescent confocal laser scanning microscopy. Cationic dextran having a sufficiently low charge density adsorbed into the pores, although the extent the cationic dextran adsorbed was governed by the molecular mass. The adsorption behavior of the cationic dextran was also studied in various electrolyte concentrations. The adsorbed mass monotonically decreased with increasing electrolyte, as the electrostatic interaction with the substrate was more effectively screened. This behavior also suggests that the interactions between adsorbed polyelectrolyte chains, i.e. lateral correlation effects, are negligible for low charge density polyelectrolytes. Finally, the effect of having a preadsorbed layer of cationic dextran on the adsorption behavior was determined in electrolyte-free conditions using fluorescent double staining techniques. The preadsorbed cationic dextran had almost no effect on the adsorption of low molecular mass fractions. Low molecular mass fractions directly adsorbed into the pore structure, as opposed to adsorbing to a free surface and diffusing into the pores. It was also shown that cationic dextran can be selectively adsorbed to different locations, such that the surface of a porous substrate can be treated uniquely from the bulk.  相似文献   

5.
The growth behavior of all-silica nanoparticle multilayer thin films assembled via layer-by-layer deposition of oppositely charged SiO2 nanoparticles was studied as a function of assembly conditions. Amine-functionalized SiO2 nanoparticles were assembled into multilayers through the use of three different sizes of negatively charged SiO2 nanoparticles. The assembly pH of the nanoparticle suspensions needed to achieve maximum growth for each system was found to be different. However, the surface charge /z/ of the negatively charged silica nanoparticles at the optimal assembly pH was approximately the same, indicating the importance of this parameter in determining the growth behavior of all-nanoparticle multilayers. When /z/ of the negatively charged nanoparticles lies between 0.6z(0) and 1.2z(0) (where z(0) is the pH-independent value of the zeta-potential of the positively charged nanoparticles used in this study), the multilayers show maximum growth for each system. The effect of particle size on the film structure was also investigated. Although nanoparticle size significantly influenced the average bilayer thickness of the multilayers, the porosity and refractive index of multilayers made from nanoparticles of different sizes varied by a small amount. For example, the porosity of the different multilayer systems ranged from 42 to 49%. This study further demonstrates that one-component all-nanoparticle multilayers can be assembled successfully by depositing nanoparticles of the same material but with opposite surface charge.  相似文献   

6.
The construction of enzyme multilayer films on colloidal particles for biocatalysis is described. The enzyme multilayers were assembled on submicrometer‐sized polystyrene spheres via the alternate adsorption of poly(ethyleneimine) and glucose oxidase using a layer‐by‐layer approach. Microelectrophoresis and single particle light scattering measurements revealed regular and step‐wise assembly of the multilayers on the colloids. The high surface area bio‐multilayer coated particles formed were subsequently utilized in enzymatic catalysis.  相似文献   

7.
A magnetic mesoporous carbon material (i.e., mesoporous iron oxide/C, mesoFe/C) is synthesized for protein immobilization, using glucose oxidase (GOx) as model. Transmission electron microscopy images show that mesoFe/C has highly ordered porous structure with uniform pore size, and iron oxide nanoparticles are dispersed along the wall of carbon. After adsorption of GOx, the GOx-mesoFe/C composite is separated with magnet. The immobilized GOx remains its natural structure according to the reflection–absorption infrared spectra. When the GOx-mesoFe/C composite is coated on a Pt electrode surface, the GOx gives a couple of quasireversible voltammetric peaks at −0.5 V (vs. saturated calomel electrode) due to the redox of FAD/FADH2. The electron-transfer rate constant (k s) is ca. 0.49 s−1. The modified electrode presents remarkably amperometric response to glucose at 0.6 V. The response time (t 95%) is less than 6 s; the response current is linear to glucose concentration in the range of 0.2–10 mM with a sensitivity of 27 μA mM−1 cm−2. The detection limit is 0.08 mM (S/N = 3). The apparent Michaelis–Menten constant (K mapp) of the enzyme reaction is ca. 6.6 mM, indicating that the GOx immobilized with mesoFe/C has high affinity to the substrate.  相似文献   

8.
Catalytic activity of catalase (CAT) immobilized on a modified silicate matrix to mediate decomposition of meta-chloroperoxibenzoic acid (3-CPBA) in acetonitrile has been investigated by means of quantitative UV-spectrophotometry. Under the selected experimental conditions, the kinetic parameters: the apparent Michaelis constat (K M ), the apparent maximum rate of enzymatic reaction (V max app ), the first order specific rate constants (k sp ), the energy of activation (E a ) and the pre-exponential factor of the Arrhenius equation (Z0) were calculated. Conclusions regarding the rate-limiting step of the overall catalytic process were drawn from the calculated values of the Gibbs energy of activation ΔG*, the enthalpy of activation ΔH*, and the entropy of activation ΔS*.  相似文献   

9.
The adsorption of mixtures of charged proteins on charged surfaces is studied using a molecular theory. The theory explicitly treats each of the molecular species in the system. The mixtures treated in this work are composed by two types of proteins, dissociated monovalent salt and solvent. The intermolecular and surface interactions include electrostatic, van der Waals and excluded volume. The theory is more general than the Poisson-Boltzmann approach since the size and shape of all the molecular components are explicitly treated. The studies presented in this work concentrate on the differences in competitive adsorption when the proteins in the mixtures differ in their total charge or in the spatial distribution of the charges within the proteins. In the cases of mixtures that differ in the number of charges it is found, as expected, that the particles with the larger charge adsorb in excess. The ratio of adsorbed proteins can vary by 3-5 orders of magnitude by varying the bulk salt concentration from 1 to 100 mM. This is the result of an increase on the adsorption of the proteins with larger charge and an even stronger decrease on the adsorption of the less charged particles. The simple model systems studied provide guidelines on how to separate charge ladder proteins and proteins with different charge distributions. In the case of proteins with the same total charge but different charge distribution, it is found that the partition of the proteins depends upon the bulk composition. However, in general the particles with the highest localized charge tend to adsorb more on the surfaces. The proteins are adsorbed in one or more layers. The structure of the second adsorbed layer is determined mostly by the bulk properties of the solution. In all cases it is found that in the range of salt concentrations studied the number of adsorbed ions from the salt is very large. This is due to competitive adsorption with the proteins and their very low bulk concentration compared to the salt. The limitations of the theory and directions for improvement of the approach as well as the model for the proteins are discussed.  相似文献   

10.
11.
The interaction between cellulose surfaces in aqueous solution has been measured using colloidal probe microscopy. Cellulose thin films with varying charge through carboxyl group substitution were used in this study with the surface forces fit to DLVO theory. It was found that the surface potential increased, as expected, with increasing carboxyl substitution. Furthermore, for a given degree of substitution, the surface potential increased as a function of increasing pH. At low pH, the surface forces interaction were attractive and could be fit to the non-retarded Hamaker equation using a constant of 3 x 10(-21) J. At pH greater than 5, the force interactions were monotonically repulsive, regardless of the ionic strength of the solution for all charge densities of the cellulose thin films. The adsorption of polyDADMAC to these charged cellulose films was also investigated using the quartz crystal microbalance. It was found that for the low charge film, a low surface excess of PDADMAC was sensed and that the adsorbed conformation was essentially flat. However for the higher charged cellulose film, a spontaneous de-swelling was observed resulting in no possibility of quantitatively determining the sensed mass using QCM.  相似文献   

12.
We theoretically investigate the dependence of the surface charge developed on charged spherical colloids upon several environmental parameters: the ionic strength of the monovalent added electrolyte, acidity (stabilized by a pH buffer solution), and colloid concentration. In the framework of the mean-field Poisson-Boltzmann spherical cell model, we include the charged colloid-microion correlations into the buffer equation, and we allow for the specific binding of ions to the ionizable groups on the colloid surface. Theoretical predictions are compared to the results obtained under the planar-symmetry Gouy-Chapman approximation and analyzed for the experimental conditions of an aqueous dispersion of the phospholipid dimyristoyl phosphatidylglycerol (DMPG). Experimental measurements of the partition ratio of an aqueous soluble cationic spin label on buffered dispersions of polyanionic unilamellar vesicles of DMPG in the presence of added monovalent salt are theoretically interpreted in terms of ion partition due to electrostatic interactions. We show that the specific binding of the probe must be admitted to explain the experimental results.  相似文献   

13.
Thermally responsive cationic gels with immobilized urease, in the shape of a small cylinder with diameter 290 - 640 μm, were prepared via gelation of an aqueous monomer solution containing the enzyme. We used N-isopropylacrylamide and N-vinylimidazole as a thermo-sensitive and a pH-sensitive monomer, respectively. Diameters at different positions of the cylinder were microscopically measured in a cell through which substrate solution (pH 4; 35°C) was passed at a constant flow rate; thus, both substrate concentration and pH at the gel surface were maintained at a constant level. It was found that the gel undergoes a shrinking change due to an enzymatically induced increase in pH within the gel phase. There was a marked position dependence of the shrinking degree; the diameter at the center of the cylinder was smaller than those at the top and at the bottom, but the diameters at the top and bottom were identical with each other. This trend was observed at immobilized enzyme concentrations < 1 mg/mL, even after the establishment of swelling equilibrium. By mathematical simulations with a reaction-diffusion model, these results were understood in connection with a charge distribution which is formed as a result of an enzymatically generated pH gradient within the gel phase.  相似文献   

14.
We have conducted a series of experiments to explore the surface of the polished pyrolytic graphite ‘edge’ electrode as routinely prepared for use in protein film voltammetry. Our investigations have included nitrogen porosimetry and scanning electron microscopy. The nitrogen adsorption revealed a Brunauer–Emmett–Teller surface area ∼104 times greater than the geometric surface area of the electrode. The pore-size distribution calculated by the Horváth–Kawazoe method showed that 10–18% of the pore volume arises from pores having widths >10 nm and, thus, should be accessible to enzymes, although much of the exposed ‘wall’ surface may be inactive for enzyme binding or electron transfer: for example, it may be mainly basal plane. Scanning electron micrographs of the abraded pyrolytic graphite edge showed differing scales of surface damage caused by the abrasion and the presence of many cracks in the surface where thin platelets had been removed.This work is dedicated to Prof. Alan Bond on the occasion of his 60th birthday. Alan’s enthusiasm for the complexities of diffusion control persuaded one of us (F.A. Armstrong) to try and avoid it altogether in protein electrochemical studies.  相似文献   

15.
The stability of thin water films on silicon substrates coated with cationic and anionic polyelectrolytes was investigated by the thin film pressure balance technique. Depending on the surface charge of the substrate, the water films are either stable (on negatively charged wafers) or rupture rapidly (on positively charged wafers). It is supposed that this behavior is due to a negative surface charge of the free water surface. The underlying assumption that the films' stability is due to electrostatic interactions is supported by measurements of the disjoining pressure on silicon wafers with a native oxide layer, which indicates a decrease of the film thickness, and thus decreasing repulsive interaction between the two film interfaces, with increasing ionic strength.  相似文献   

16.
In this study a systematic investigation on the adsorption of polyethylene oxide (PEO) onto the surface of silica particles and the viscosity behavior of concentrated dispersions of silica particles with adsorbed PEO has been performed. The variation of shear viscosity with the adsorbed layer density, concentration of free polymer in the solution (depletion forces), polymer molecular weight, and adsorbed layer thickness at different salt concentrations (range of the electrostatic repulsion between particles) is presented and discussed. Adsorption and rheological studies were performed on suspensions of silica particles dispersed in solutions of 10−2 M and 10−4 M NaNO3 containing PEO of molecular weights 7,500 and 18,500 of different concentrations. Adsorption measurements gave evidence of a primary plateau in the adsorption density of 7,500 MW PEO at an electrolyte concentration of 10−2 M NaNO3. Results indicate that the range of the electrostatic repulsion between the suspended particles affects both adsorption density of the polymer onto the surface of the particles and the viscosity behavior of the system. The adsorbed layer thickness was estimated from the values of zeta potential in the presence and absence of the polymer and was found to decrease with decreasing the range of the electrostatic repulsive forces between the particles. Experimental results show that even though there is a direct relation between the viscosity of the suspension and the adsorption density of the polymer onto the surface of the particles, variation of viscosity with adsorption density, equilibrium concentration of the polymer, and range of the electrostatic repulsion cannot be explained just in term of the effective volume fraction of the particles and needs to be further investigated. Received: 15 February 2000/Accepted: 26 June 2000  相似文献   

17.
In this work, gold nanoparticles lower than 10?nm were prepared in an aqueous medium using two charged silsesquioxanes, the propylpyridinium chloride and propyl-1-azonia-4-azabicyclo[2.2.2]octane chloride, as stabilizer agents which revealed to be water-soluble. This stabilization method is innovative allowing thin films containing gold nanoparticles to be obtained, and it was used for the first time in the preparation of carbon paste electrodes (CPEs). The charged silsesquioxanes were characterized by liquid 13C NMR. The gold nanoparticle/silsesquioxane systems were characterized by ultraviolet–visible spectroscopy (UV–Vis) and transmission electron microscopy. In sequence, they were immobilized on silica matrix coated with aluminum oxide. The resulting solid materials designated as Au-Py/AlSi and Au-Db/AlSi were characterized by infrared spectroscopy and N2 adsorption/desorption isotherms. The results showed that the gold nanoparticle/silsesquioxane systems are strongly adhered to the surface-forming thin films. The Au-Py/AlSi and Au-Db/AlSi materials were used to prepare CPEs for the electrooxidation of nitrite (NO 2 ? ) using cyclic voltammetry and differential pulse voltammetry. The Au-Py/AlSi and Au-Db/AlSi CPEs showed high sensitivity and detection limits of 71.87 and 53.66?μA?mmol–1?L and 1.3 and 3.0?μmol?L–1, respectively.  相似文献   

18.
We report the first application of hydrophobic interaction between graphene oxide (GO) and negatively charged enzymes to fabricate CE-integrated immobilized enzyme microreactors (IMERs) by a simple and reliable immobilization procedure based on layer by layer assembly. L -lactate dehydrogenase (L -LDH), which is negatively charged during the enzymatic reaction, is selected as the model enzyme. Various spectroscopic techniques, including SEM, FTIR, and UV-vis are used to characterize the fabricated CE-IMERs, demonstrating the successful immobilization of enzymes on the negatively charged GO layer in the capillary surface. The IMER exhibits excellent repeatability with RSDs of inter-day and batch-to-batch less than 3.49 and 6.37%, respectively, and the activity of immobilized enzymes remains about 90% after five-day usage. The measured Km values of pyruvate and NADH of the immobilized L -LDH are in good agreement with those obtained by free enzymes. The results demonstrate that the hydrophobic interactions and/or π-π stacking is significant between the GO backbone and the aromatic residues of L -LDH and favorable to fabrication of CE-integrated IMERs. Finally, the method is successfully applied to the determination of pyruvate in beer samples.  相似文献   

19.
This paper experimentally and theoretically investigates the influence of an underlying metallic substrate (i.e., gold and silver) on the surface plasmon resonance (SPR) of labeled gold nanoparticles and the concomitant impact on the surface-enhanced Raman scattering (SERS) signal from the labels. These experiments employ nanoparticles of varied sizes (30-100 nm) that are coated with a bifunctional Raman scatterer composed of (1) a disulfide for chemisorption to the nanoparticle surface, (2) a succinimidyl ester for formation of a covalent linkage to an amine-terminated self-assembled monolayer on the underlying substrate, and (3) an aryl nitro group with an intrinsically strong Raman active vibrational mode. This approach allows facile systematic assessments of how variations in nanoparticle size, substrate composition, and the gap between the nanoparticle and substrate affect the SPR of the bound particles. Both UV-vis transmission and reflection absorption (incident angle of 58 degrees ) spectroscopy are used to characterize the effect of each of these parameters on SPR. These results are then correlated with SERS enhancement factors (EFs) that were determined by accounting for particle surface concentrations, which were measured by atomic force microscopy, and the absolute number of labels, which were calculated on the basis of the surface area of each of the different-sized particles. All SERS spectra were collected at an incident angle of 58 degrees with respect to the surface normal. As expected, the SPR for particles in solution red-shifts with increasing particle size. More importantly, the SPR moves to even longer wavelengths as the size of immobilized particles increases and as the gap between the immobilized particle and substrate decreases. The red shift is also greater for a gold nanoparticle tethered to a gold substrate compared to a silver substrate. A theoretical model for the extinction of a particle above a flat substrate, corrected for surface scattering, radiation damping, and dynamic depolarization, is also briefly detailed. SPR results calculated with the model are consistent with the shifts observed in the SPR position for each of the manipulated experimental variables. The largest EFs are found for samples with an SPR maximum (lambda(max)) between the wavelengths for laser excitation (633 nm) and the Raman band for the symmetric nitro stretch of the particle coating (690 nm). As an example, an order of magnitude in the SERS enhancement factor is gained for a 60-nm particle immobilized 1.2 nm above a gold substrate (SPR lambda(max) = 657 nm) compared to that for a 30-nm particle (SPR lambda(max) = 596 nm).  相似文献   

20.
Surface pressure-area isotherms (-A) of poly(L-alanine) (PA), poly(L-glutamic acid) (PG), and poly(L-arginine) (PArg) monolayers spread on substrates of varous pH values containing silicic acid were recorded and compared with those obtained on silica-free substrates. The compression curves of PA showed a pH-independent plateau region which was assumed to correspond to a monolayer to bilayer transition. The inflection observed in the -A curves of PG was attributed to the formation of loops made up of the terminal heads of the polymer and lying under the monolayer. Polysilicic acid interacted with the PArg films at pH 6; such films were more rigid and stable and had larger specific areas than those obtained in the absence of silica, which prompts the occurrence of an ionic interaction. The other two polyamino-acids did not interact with silicic acid at any pH value, so we may rule out the formation of hydrogen bonds between the silanol groups of polysilicic acid and the peptide or carboxyl groups of these amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号