首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The main methods for the simplification of the NMR of complex mixtures by selective attenuation/suppression of the signals of certain components are presented. The application of relaxation, diffusion and PSR filters and other techniques to biological samples, pharmaceuticals, foods, living organisms and natural products are illustrated with examples.  相似文献   

3.
Although the number of natural fluorinated compounds is very small, fluorinated pharmaceuticals and agrochemicals are numerous. 19F NMR spectroscopy has a great potential for the structure elucidation of fluorinated organic molecules, starting with their production by chemical or chemoenzymatic reactions, through monitoring their structural integrity, to their biotic and abiotic transformation and ultimate degradation in the environment. Additionally, choosing to incorporate 19F into any organic molecule opens a convenient route to study reaction mechanisms and kinetics. Addressing limitations of the existing 19F NMR techniques, we have developed methodology that uses 19F as a powerful spectroscopic spy to study mixtures of fluorinated molecules. The proposed 19F-centred NMR analysis utilises the substantial resolution and sensitivity of 19F to obtain a large number of NMR parameters, which enable structure determination of fluorinated compounds without the need for their separation or the use of standards. Here we illustrate the 19F-centred structure determination process and demonstrate its power by successfully elucidating the structures of chloramination disinfectant by-products of a single mono-fluorinated phenolic compound, which would have been impossible otherwise. This novel NMR approach for the structure elucidation of molecules in complex mixtures represents a major contribution towards the analysis of chemical and biological processes involving fluorinated compounds.

19F-centred NMR structure determination protocol alleviates the need for compound separation. Disinfection byproducts of chloramination were unraveled by analyzing the reaction pathways of a single fluorinated molecule.  相似文献   

4.
The detailed characterization of complex molecular mixtures plays a key role in many areas of modern Chemistry. Here we report a novel NMR spectroscopic method that deconvolutes a complex mixture of organic molecules simultaneously into individual components and depicts their chemical structure without requiring physical separation of the components. Doubly indirect covariance spectroscopy is introduced and applied to 2D (13)C-(1)H HSQC and 2D (1)H-(1)H COSY spectra, which results in a (13)C-(13)C 2D spectrum with unprecedented high resolution. This reconstituted spectrum is indeed a carbon-connectivity map that can be directly analyzed with basic graph theory to obtain the skeletal structures of individual mixture components or their fragments. The method is demonstrated for a model mixture and a natural product mixture extracted from cancer cells. Its suitability for automation makes this approach attractive for the analysis of a broad range of mixtures of natural or synthetic products.  相似文献   

5.
The C-13 NMR spectra of partly crystalline poly(phenylacetylene) (PPA) in CDCl3 CCl4 are rather well resolved and the peaks can be matched with those of 1, 3,5-triphenylbenzene. A different, less-well-resolved C-13 spectrum is characteristic of a disordered PPA obtained by heating. We conclude that crystalline PPA has the chain conformation of a cis-cis-oid helix. This interpretation is consistent with the proton NMR spectra and is supported by the fluorescence spectra, which can display two bands, one concluded to be characteristic of the cis-cis-oid conformation, the other of chain conjugation in the disordered polymer. Phase equilibria of PPA in the presence of chloroform were determined and are represented as those of the quasiternary mixture cis-cis-oid helix, disordered polymer, and chloroform.  相似文献   

6.
New expressions for the viscosity of liquid mixtures, consisting of chain-like molecules, are derived by means of Enskog-type analysis. The molecules of the fluid are modelled as chains of equally sized, tangentially joined, and rigid spheres. It is assumed that the collision dynamics in such a fluid can be approximated by instantaneous collisions. We determine the molecular size parameters from the viscosity of each pure species and show how the different effective parameters can be evaluated by extending the Vesovic-Wakeham (VW) method. We propose and implement a number of thermodynamically consistent mixing rules, taking advantage of SAFT-type analysis, in order to develop the VW method for chain molecules. The predictions of the VW-chain model have been compared in the first instance with experimental viscosity data for octane-dodecane and methane-decane mixtures, thus, illustrating that the resulting VW-chain model is capable of accurately representing the viscosity of real liquid mixtures.  相似文献   

7.
8.
A novel resin called DEUSS (perdeuterated poly(oxyethylene)-based solid support) has been prepared by anionic polymerization of deuterated [D4]ethylene oxide, followed by cross-linking with deuterated epichlorohydrin. DEUSS can be suspended in a wide range of solvents including organic and aqueous solutions, in which it displays a high swelling capacity. As measured by proton HRMAS of the swollen polymer, the signal intensity of the oxyethylene protons is reduced by a factor of 110 relative to the corresponding nondeuterated poly(oxyethylene)poly(oxypropylene) (POEPOP) resin, thus facilitating detailed HRMAS NMR studies of covalently linked molecules. This 1H NMR invisible matrix was used for the solid-phase synthesis of peptides, oligoureas, and a series of amides as well as their characterization by HRMAS NMR spectroscopy. On-bead NMR spectra of high quality and with resolution comparable to that of liquid samples were obtained and readily interpreted. The complete absence of the parasite resin signals will be of great advantage, for example, for the optimization of multistep solid-phase stereoselective reactions, and for the conformational study of resin-bound molecules in a large variety of solvents.  相似文献   

9.
Pulsed-field gradient (PFG) NMR studies of tetrapropylammonium (TPA)-tetramethylammonium (TMA)-silica mixtures are presented, and the effect of TMA as a foreign ion on the TPA-silica nanoparticle interactions before and after heating has been studied. Dynamic light scattering (DLS) results suggest that silica nanoparticles in these TPA-TMA systems grow via a ripening mechanism for the first 24 h of heating. PFG NMR of mixtures before heating show that TMA can effectively displace TPA from the nanoparticle surface. The binding isotherms of TPA at room temperature obtained via PFG NMR can be described by Langmuir isotherms, and indicate a decrease in the adsorbed amount of TPA upon addition of TMA. PFG NMR also shows a systematic increase in the self-diffusion coefficient of TPA in both the mixed TPA-TMA systems and pure TPA systems with heating time, indicating an increased amount of TPA in solution upon heating. By contrast, a much smaller amount of TMA is observed to desorb from the nanoparticles upon heating. These results point to the desorption of TPA from the nanoparticles being a kinetically controlled process. The apparent desorption rate constants were calculated from fitting the desorbed amount of TPA with time via a pseudosecond-order kinetic model. This analysis show the rate of TPA desorption in TPA-TMA mixtures increases with increasing TMA content, whereas for pure TPA mixtures the rate of TPA desorption is much less sensitive to the TPA concentration.  相似文献   

10.
From solid state NMR spectra, a lower shielding of poly(ethylene oxide) (PEO) protons, in contrast to higher shielding of PEO carbons, has been found for PEO/hydroxybenzene and PEO/LiCF3SO3 complexes in comparison with neat PEO. The same PEO chemical shifts were found both for crystalline and amorphous phase of PEO/LiCF3SO3 polymer electrolyte, confirming the same interaction in both phases. Measurements of 2D 1H CRAMPS exchange NMR spectra have been used to characterize proton distances in complexes of PEO and benzene derivatives. A close contact (∼ 0.3 nm) between aromatic and PEO protons was detected in some cases. From the measurements of the cross polarization 1H → 13C, using Lee-Goldburg irradiation of 1H nuclei, the distance between LiCF3SO3 carbon and the nearest PEO protons in the PEO/LiCF3SO3 complex was determined.  相似文献   

11.
The dynamic‐mechanical properties of different mixtures formed by an epoxy resin (DGEBA type) and a phenolic resin (resole type) cured by trietylenetetramine and/or p‐toluensulphonic acid at different concentrations have been studied by means of dynamic mechanical thermal analysis (DMTA). All samples were cured by pressing at 90 °C during 6 h. The mechanical studies were performed between ?100 to 300 °C at a heating rate of 2 °C/min. This study was also carried out for the epoxy‐TETA and phenolic‐p‐toluensulphonic acid systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1548–1555, 2005  相似文献   

12.
Micellar enhanced ultrafiltration (MEUF) of different phenolic derivatives including meta-nitrophenol (MNP), catechol (CC), para-nitrophenol (PNP), and beta-napthol (BN) in their binary mixture has been studied. A 1:1 ratio of the mixture of (i) MNP with CC and (ii) PNP with BN is taken for the MEUF experiments using a cationic surfactant, namely, cetyl(hexadecyl)pyridinium chloride (CPC). An organic polyamide membrane with molecular weight cutoff of 1000 is used. Experiments are conducted using an unstirred batch cell and a continuous cross-flow cell. The effects of various operating conditions, e.g., concentrations of surfactant and solute in the feed, transmembrane pressure drop, and cross-flow rate (for cross-flow experiments) on the permeate flux and the observed retention of each solute have been studied in detail. The retention of solutes without using the surfactant varies from 3 to 15% only at a typical feed solute concentration of 0.09 kg/m3, whereas, under the same operating pressure (345 kPa), retention at the end of the experiment increases to about 66 to 99.8% depending on the nature of solute in the batch cell using surfactant micelles (10 kg/m3). Retention of solutes is less in the case of the two-component feed solution compared to the single-component feed solution. An increase in flux to the range of 9 to 16% is realized in cross-flow experiments compared to batch cell flux after one hour of operation.  相似文献   

13.
《European Polymer Journal》1985,21(10):877-883
Liquid NMR techniques were used to elucidate the molecular organization and dynamics of poly[tetra(ethylene glycol)dimethacrylate] and poly[tetra(ethylene glycol)diacrylate] as a function of cure. The change in line width of the monomer was used to determine the extent of cure and indicate the mobility in the polymer matrix. Line widths of different parts of the monomer peaks broadened at different extents of cure. Non-reacting tracer molecules (dimethylsulphoxide, methyl acetate, decalin, cyclohexane and dodecane) were also introduced into the curing system at low concentrations and their line widths observed. It was found that they broadened at differing rates and persisted well into the later stages of the cure when the monomer peaks had broadened into the baseline. In typical cures the monomer peaks broadened simply but, in atypical cases, the line shapes showed that there were two monomer domains one constrained and the other unconstrained. All tracers became constrained with increasing cure, except dodecane. The line shape of pure monomer was also followed as a function of temperature and found to broaden in similar fashion to the monomer during a typical cure.  相似文献   

14.
A study of the complex formation which occurs between cerium(III) and nitrate ions in aqueous solvent mixtures has been carried out by a direct, low-temperature, nitrogen-15 (15N) NMR technique. At temperatures in the range of –95 to –110°C, ligand exchange is slow enough to permit the observation of separate15N NMR signals for bulk nitrate, and this anion in the cerium(III) principal coordination shell. In water-acetone-Freon-12 mixtures, the spectra reveal the nitrato complexes do not form consecutively. Rather, signals are observed for Ce(NO3)2+, Ce(NO3) 2 1+ , and only two other higher order complexes, even at very high NO 3 to Ce(III) mole ratios. Signal area evaluations were used to identify the possible higher order complexes. At comparable salt concentrations in aqueous-methanol mixtures, only Ce(NO3)2+ and Ce(NO3) 2 1+ are formed, reflecting a decreased tendency for complexation in media of higher dielectric constant.  相似文献   

15.
The extent of inner-shell ion-pair formation of Er3+ with nitrate ion in aqueous mixtures has been studied by nitrogen-15 (15N) NMR spectroscopy. At low temperature, exchange is slow enough to permit the direct observation of15N signals for nitrate ions in the Er3+ solvation shell and in bulk medium. In water-acetone mixtures,15N NMR signals for the mono-and bis complexes are observed at low nitrate to Er3+ mole ratios, but only the bis complex is evident at higher anion concentrations. No spectral evidence for the tris complex was seen at any nitrate concentration. In water-methanol-acetone mixtures, signals for the mono and bis complexes persist even at higher nitrate concentrations, indicating a reduced tendency to ion-pair with increasing dielectric constant. Preliminary15N NMR results are presented for the nitrate complexes of other paramagnetic lanthanide ions.  相似文献   

16.
We introduce a new approach for resolving the NMR spectra of mixtures that relies on the mutual diffusion of dissolved species when a concentration gradient is established within the NMR tube. This is achieved by cooling down a biphasic mixture of triethylamine and deuterated water below its mixing temperature, where a single phase is expected. Until equilibrium is reached, a gradient of concentration, from ‘pure’ triethylamine to ‘pure’ water, establishes within the tube. The amount of time required to reach this equilibrium is controlled by the mutual diffusion coefficient of both species. Moreover, a gradient of concentration exists for each additional compound dissolved in this system, related to the partition coefficient for that compound in the original biphasic state. Using slice selective experiments, it was possible to measure these concentration gradients and use them to separate signals from all the present species. We show the results acquired for a mixture composed of n‐octanol, methanol, acetonitrile and benzene and compare them with those obtained by pulse field gradient NMR. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The application of UV-Vis and time-resolved laser-induced fluorescence (TRLF) spectroscopies to direct speciation of uranium(VI) in environmental samples offers various prospects that have, however, serious limitations. While UV-Vis spectroscopy is probably not sensitive enough to detect uranium(VI) species in the majority of environmental samples, TRLFS is principially able to speciate uranium(VI) at very low concentration levels in the nanomol range. Speciation by TRLFS can be based on three parameters: excitation spectrum, emission spectrum and lifetime of the fluorescence emission process. Due to quenching effects, the lifetime may not be expected to be as characteristic as, e.g., the emission spectrum. Quenching of U(VI) fluorescence by reaction with organic substances, inorganic ions and formation of carbonate radicals is one important limiting factor in the application of U(VI) fluorescence spectroscopy. Fundamental photophysical criteria are illustrated using UV-Vis and fluorescence spectra of U(VI) hydrolysis and carbonato species as examples.  相似文献   

18.
Two-dimensional triple-resonance H(Si)C NMR experiments have been applied at natural abundance to assign 13C NMR signals in silylated phenols. The method showing its great potential in determining positions of hydroxyl groups is widely applicable to signal assignment and structure elucidation of synthetic and natural phenolic compounds.  相似文献   

19.
20.
We demonstrate a multi-spectrum technique for facile, quantitative determination of lead in solid materials using solid-state (207)Pb NMR that avoids the major problem of uniform excitation across a wide spectral range; the method can be employed without chemical separation or other chemical manipulations and without any prior sample preparation, resulting in a non-destructive analysis, and producing results that are in agreement with gravimetric analyses of mixed samples of the lead halides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号