共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Martinson AB McGarrah JE Parpia MO Hupp JT 《Physical chemistry chemical physics : PCCP》2006,8(40):4655-4659
Intensity modulated photovoltage and photocurrent spectroscopies reveal that photoanodes based on nanorod arrays exhibit dramatically faster electron transport while retaining similar electron lifetimes (recombination times) compared to standard photoanodes assembled from colloidal nanoparticles. 相似文献
3.
Zhu K Kopidakis N Neale NR van de Lagemaat J Frank AJ 《The journal of physical chemistry. B》2006,110(50):25174-25180
The dependence of the electron transport and recombination dynamics on the internal surface area of mesoporous nanocrystalline TiO2 films in dye-sensitized solar cells was investigated. The internal surface area was varied by altering the average particle size in the films. The scaling of the photoelectron density and the electron diffusion coefficient at short circuit with internal surface area confirms the results of a recent study (Kopidakis, N.; Neale, N. R.; Zhu, K.; van de Lagemaat, J.; Frank, A. J. Appl. Phys. Lett. 2005, 87, 202106) that transport-limiting traps are located predominately on the surfaces of the particles. The recombination current density was found to increase superlinearly (with an exponent of 1.40 +/- 0.12) with the internal surface area. This result is at odds with the expected linear dependence of the recombination current density on the surface area when only the film thickness is increased. The observed scaling of the recombination current density with surface area is consistent with recombination being transport-limited. Evidence is also presented confirming that photoinjected electrons recombine with redox species in the electrolyte via surface states rather than from the TiO2 conduction band. 相似文献
4.
Samaneh Mozaffari Mohamad Reza Nateghi Mahmood Borhanizarandi 《Journal of Solid State Electrochemistry》2014,18(9):2589-2598
A new water-based solution of ion-conductive polymeric gel electrolyte composed of polyethylene glycol and polyvinylpyrrolidone as gel-forming substances, I?/I3 ? as reversible redox couple, and various ratios of acetonitrile/water solvents was prepared and used in the fabrication of dye-sensitized solar cells. The effects of water on the electrochemical behavior of the prepared electrolyte solutions were examined by the cyclic voltammetry and electrochemical impedance spectroscopy techniques. Electrochemical impedance spectroscopy was employed to quantify the charge-transfer resistance and the electron lifetime at the TiO2 conduction band. The characteristic peak shifted to a lower frequency in the Bode phase plot, which is an indication of a longer electron lifetime for the cell containing more water content. Photovoltaic performance of the cells prepared by the new water-based gel electrolyte was studied. Changes in the current density–voltage (J–V) characteristics can be explained based on the effect of water on the energetics and kinetics of charge transport and charge recombination in the dye-sensitized solar cells (DSSCs). It was observed that the increase in open-circuit voltage (V oc) and fill factor and decrease in J SC were noticeable for cells containing water-based gel electrolyte. It was indicated that the charge recombination between injected electrons and electron acceptors (polyiodide) in the redox electrolyte was remarkably inhibited by the increase of water. The photovoltaic performance stability of the DSSC containing gel electrolyte solution including 50 wt% of water was examined, and it was shown that it is more stable than conventional cells considerably for 168 h. Energy conversion efficiency of 2.30 % was achieved, under illumination with a simulated solar light of 100 mW cm?2. 相似文献
5.
本文通过设计一种特殊的电池结构,动态改变电解液与导电玻璃(Tc0)的接触面积,固定Ti02薄膜面积,将TCO/OL解液界面与TiO2/电解液界面两种复合途径进行区分,从实验和理论两方面研究了复合途径变化对染料敏化太阳电池(DSC)性能的影响.采用电化学阻抗谱(EIS)表征界面电荷交换过程,研究了不同途径在复合中的作用机理.通过单色光下,1-V性能测试,对不同界面复合主导下的DSC二极管特性进行数值分析,探讨了复合过程中界面电荷交换变化对光电压(‰)的影响.研究结果表明,高光强下(Voc=700mV)改变TCO/电解液接触面积对复合影响不明显,DSC电子复合主要经由TiO2/电解液界面,电池具有明显的二极管特征;而弱光下(Voc〈400mV)增加TCO/电解液接触面积将使复合大幅增加,此时电荷交换由TCO/电解液界面主导,电池填充因子大幅降低,整流作用减弱.由于TCO/OL解液界面电荷交换明显慢于TiO2/电解液界面,通过同一电池一定光强范围内的光电压变化对比发现,高光强下光电压变化较慢,而弱光下光电压变化较快. 相似文献
6.
Tuikka M Hirva P Rissanen K Korppi-Tommola J Haukka M 《Chemical communications (Cambridge, England)》2011,47(15):4499-4501
The halogen bonding between [Ru(dcbpy)(2)(SCN)(2)] dye and I(2) molecule has been studied. The ruthenium complex forms a stable [Ru(dcbpy)(2)(SCN)(2)]···I(2)·4(CH(3)OH) adduct via S···I interaction between the thiocyanate ligand and the I(2) molecule. The adduct can be seen as a model for one of the key intermediates in the regeneration cycle of the oxidized dye by the I(-)/I(3)(-) electrolyte in dye sensitized solar cells. 相似文献
7.
Barnes PR Anderson AY Juozapavicius M Liu L Li X Palomares E Forneli A O'Regan BC 《Physical chemistry chemical physics : PCCP》2011,13(8):3547-3558
A simple and powerful approach for assessing the recombination losses in dye sensitised solar cells (DSSCs) across the current voltage curve (j-V) as a function of TiO(2) electron concentration (n) is demonstrated. The total flux of electrons recombining with iodine species in the electrolyte and oxidised dye molecules can be thought of as a recombination current density, defined as j(rec) = j(inj)-j where j(inj) is the current of electrons injected from optically excited dye states and j is the current density collected at cell voltage (V). The electron concentration at any given operating conditions is determined by charge extraction. This allows comparison of factors influencing electron recombination rates at matched n. We show that j(rec) is typically 2-3 times higher under 1 sun equivalent illumination (j(inj) > 0) relative to dark (j(inj) = 0) conditions. This difference was increased by increasing light intensity, electrolyte iodine concentration and electrolyte solvent viscosity. The difference was reduced by increasing the electrolyte iodide concentration and increasing the temperature. These results allowed us to verify a numerical model of complete operational cells (Barnes et al., Phys. Chem. Chem. Phys., DOI: 10.1039/c0cp01554g) and to relate the differences in j(rec) to physical processes in the devices. The difference between j(rec) in the light and dark can be explained by two factors: (1) an increase in the concentration of electron acceptor species (I(3)(-) and/or I(2)) when current is flowing under illumination relative to dark conditions where the current is flowing in the opposite direction, and (2) a non-trivial contribution from electron recombination to oxidised dye molecules under light conditions. More generally, the technique helps to assign the observed relationship between the components, processing and performance of DSSCs to more fundamental physical processes. 相似文献
8.
Xuemei Ma 《Tetrahedron》2008,64(2):345-350
A novel organic cyanine dye containing triphenylamine-benzothiadiazole dyad has been synthesized and applied successfully to sensitization of nanocrystalline TiO2-based solar cell. Their absorption spectra, electrochemical, and photovoltaic properties were studied. Upon adsorption on a TiO2 electrode, the absorption spectra of the cyanine dye are all broadened at both the red and blue spectral ends relative to its respective spectra in acetonitrile and ethanol mixture solution. An overall conversion efficiency of 7.62% (Jsc=22.10 mA cm−2, Voc=0.54 V, ff=0.48) is achieved under irradiation with 75 mW cm−2 white light from a Xe lamp. 相似文献
9.
Bai Y Zhang J Zhou D Wang Y Zhang M Wang P 《Journal of the American Chemical Society》2011,133(30):11442-11445
With a new metal-free donor-acceptor photosensitizer featuring the 2,6-bis(thiophen-2-yl)-4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-conjugated spacer and the tris(1,10-phenanthroline)cobalt(II/III) redox shuttle, we present a highly efficient iodine-free dye-sensitized solar cell displaying a power conversion efficiency of 9.4% measured at 100 mW cm(-2) simulated AM1.5 conditions. 相似文献
10.
High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye 总被引:2,自引:0,他引:2
Ito S Miura H Uchida S Takata M Sumioka K Liska P Comte P Péchy P Grätzel M 《Chemical communications (Cambridge, England)》2008,(41):5194-5196
An indoline dye (D205), the synthesis method of which is disclosed in this report, gave high-efficiency organic dye-sensitized solar cells (9.52%) using an anti-aggregation reagent (chenodeoxycholic acid). 相似文献
11.
Soon Hyung Kang Moon-Sung Kang Sang-Hyun Choi Jae-Yup Kim Hyun-Sik Kim Taeghwan Hyeon Yung-Eun Sung 《Electrochemistry communications》2008,10(9):1326-1329
Dye-sensitized solar cells (DSSCs) employing a viscous non-volatile electrolyte were prepared by utilizing anatase TiO2 nanorods (synthesized via oriented attachment) as a photoanode material. One promising way to enhance the photovoltaic performance of DSSCs employing viscous electrolytes is to increase ion conductivity by increasing the salt concentration. This is accompanied by an acceleration of the charge recombination reaction and the limiting of the overall conversion efficiency. The results showed that a TiO2 nanorod electrode enables more favorable electron transport than a conventional nanoparticle-based electrode due to the improved electron diffusion length and the large intrinsic surface area. 相似文献
12.
Handa S Wietasch H Thelakkat M Durrant JR Haque SA 《Chemical communications (Cambridge, England)》2007,(17):1725-1727
Herein we report the application of supramolecular dyes to control charge recombination between photo-injected electrons and oxidized hole-transporting material, resulting in an enhancement in the performance of dye sensitized solar cell devices based upon such dyes. 相似文献
13.
Nakade S Makimoto Y Kubo W Kitamura T Wada Y Yanagida S 《The journal of physical chemistry. B》2005,109(8):3488-3493
Dye-sensitized solar cells (DSC) were prepared from nanoporous TiO(2) electrodes with two different cobalt complex redox couples, propylene-1,2-bis(o-iminobenzylideneaminato)cobalt(II) {Co(II)(abpn)} and tris(4,4'-di-tert-buthyl-2,2'-bipyridine)cobalt(II) diperchlorate {Co(II)(dtb-bpy)(3)(ClO(4))(2)}. The performances of the DSCs were examined with varying the concentrations of the redox couples and Li cations in methoxyacetonitrile. Under 1 sun conditions, short-circuit currents (J(sc)) increased with the increase of the redox couple concentration, and the maximum J(sc) was found at the Li(+) concentration of 100 mM. To rationalize the observed trends of J(sc), electron diffusion coefficients and lifetimes in the DSCs were measured. Electron diffusion coefficients in the DSCs using cobalt complexes were comparable to the previously reported values of nanoporous TiO(2). Electron lifetime was independent of the concentration of the redox couples when the concentration ratio of Co(II)(L) and Co(III)(L) was fixed. With the increase of Li(+) concentration, the electron lifetime increased. These results were interpreted as due to their slow charge-transfer kinetics and the cationic nature of Co complex redox couples, in contrast to the anionic redox couple of I(-)/I(3)(-). The increase of the lifetimes with Li(+) was interpreted with the decrease of the local concentration of Co(III) near the surface of TiO(2). The addition of 4-tert-butylpyridine (tBP) with the presence of Li(+) increased J(sc) significantly. The observed increase of the electron lifetime by tBP could not explain the large increase of J(sc), implying that tBP facilitates the charge transfer from Co(II)(L) to dye cation, with the association of the change of the reorganization energy between Co(II) and Co(III). 相似文献
14.
Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells 总被引:1,自引:0,他引:1
Tan S Zhai J Xue B Wan M Meng Q Li Y Jiang L Zhu D 《Langmuir : the ACS journal of surfaces and colloids》2004,20(7):2934-2937
The influence of polyanilines (PANIs) as hole conductors on the photovoltaic behaviors of dye-sensitized solar cells is studied. The current-voltage (I-V) characteristics and the incident photon to current conversion efficiency (IPCE) curves of the devices are determined as the function of different conductivities and morphologies of PANIs. The results show that the conductivity of PANIs affects the performance of the devices greatly, and PANI with the intermediate conductivity value (3.5 S/cm) is optimum. In addition, the effects of both the film formation property and the cluster size of polyanilines on the photovoltaic behaviors of the devices are also discussed. 相似文献
15.
16.
Olson CL 《The journal of physical chemistry. B》2006,110(19):9619-9626
The reaction of a dye cation recombining with an electron in TiO(2), in the presence of Li(+), Ca(2+), and TBA(+) cations, was studied with laser-induced transient absorption measurements. The active cations, Li(+) and Ca(2+), shorten the dye cation lifetime on sensitized TiO(2) but not ZnO electrodes. By combining the absorbance measurements of the dye cation with simultaneous measurements of the current transient, the contribution of the recombination reaction to the current is identified. Furthermore, classical porous electrode theory is used to quantify the behavior of the heterogeneous electrode, and in doing so, the processes contributing to photoinduced current are identified as Helmholtz layer charging, porous electrode charging, recombination reactions, and surface diffusion of the active cations. The rate of charge recombination is proportional to the concentration of initially deposited active cations. The effect of water on the recombination rate and the current is also observed. 相似文献
17.
The state of dye adsorption on TiO2 electrodes in dye-sensitized solar-cell (DSSC) systems is important for its power-conversion efficiency (PCE). We propose a non-destructive and quantitative method to evaluate the amount of adsorbed dye on TiO2 electrodes by using micro-Raman spectroscopy. The Raman peak intensity ratio of adsorbed dye to TiO2, Id/It, is defined as a dye adsorption parameter. Based on a comparison between Id/It and the amount of dye evaluated from UV–vis absorption, the quantitativity and reproducibility of our method are verified.We investigated the change of Id/It spatial distribution of TiO2 electrodes immersed in a dye solution for different time scales. The statistical analysis of Id/It distribution suggests that dyes adsorbed on TiO2 electrodes with chemical coordination increase at first, and after their saturation, dye aggregations are formed over the chemisorption layer. We also describe the effect of the Id/It distribution on PCE. From a comparison of PCE and Id/It distribution obtained from various immersion processes, it was considered that the PCE of DSSCs can be optimized by minimizing the Id/It dispersion. 相似文献
18.
Unger EL Morandeira A Persson M Zietz B Ripaud E Leriche P Roncali J Hagfeldt A Boschloo G 《Physical chemistry chemical physics : PCCP》2011,13(45):20172-20177
The hole transporting medium in solid-state dye-sensitized solar cells can be utilized to harvest sunlight. Herein we demonstrate that a triphenylamine-based dye, used as hole-transporting medium, contributes to the photocurrent in a squaraine-sensitized solid-state dye-sensitized solar cell. Steady-state photoluminescence measurements have been used to distinguish between electron transfer and energy transfer processes leading to energy conversion upon light absorption in the hole-transporting dye. 相似文献
19.
Zhang Z Zakeeruddin SM O'Regan BC Humphry-Baker R Grätzel M 《The journal of physical chemistry. B》2005,109(46):21818-21824
Dye-sensitized solar cells based on nanocrystalline TiO(2) have been fabricated with an amphiphilic ruthenium sensitizer [Ru (4,4'-dicarboxylic acid-2,2'-bipyridine) (4,4'-bis(p-hexyloxystyryl)-2,2'-bipyridine)(NCS)(2)], coded as K-19, and 4-guanidinobutyric acid (GBA) as coadsorbent. The cells showed a approximately 50 mV increase in open-circuit voltage and a similar current in comparison with cells without GBA cografting. The performance of both types of devices was evaluated on the basis of their photocurrent-voltage characteristics, dark current measurements, cyclic voltammetry, electrochemical impedance spectroscopy, and phototransient decay methods. The results indicate that GBA shifted the conduction band of TiO(2) toward a more negative potential and reduced the interfacial charge-transfer reaction from conduction band electrons to triiodide in the electrolyte (also known as the back reaction). In addition, the devices with GBA cografting showed an excellent stability with a power conversion efficiency of approximately 8% under simulated full sunlight (air mass 1.5, 100 mW cm(-2)) during visible light soaking at 60 degrees C. 相似文献
20.
Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers 总被引:8,自引:0,他引:8
Palomares E Clifford JN Haque SA Lutz T Durrant JR 《Journal of the American Chemical Society》2003,125(2):475-482
We report herein a methodology for conformally coating nanocrystalline TiO2 films with a thin overlayer of a second metal oxide. SiO2, Al2O3, and ZrO2 overlayers were fabricated by dipping mesoporous, nanocrystalline TiO2 films in organic solutions of their respective alkoxides, followed by sintering at 435 degrees C. These three metal oxide overlayers are shown in all cases to act as barrier layers for interfacial electron transfer processes. However, experimental measurements of film electron density and interfacial charge recombination dynamics under applied negative bias were vary significantly for the overlayers. A good correlation was observed between these observations and the point of zero charge of the different metal oxides. On this basis, it is found that the most basic overlayer coating, Al2O3 (pzc = 9.2), is optimal for retarding interfacial recombination losses under negative applied bias. These observations show good correlation with current/voltage analyses of dye sensitized solar cell fabricated from these films, with the Al2O3 resulting in an increase in V(oc) of up to 50 mV and a 35% improvement in overall device efficiency. These observations are discussed and compared with an alternative TiCl4 posttreatment of nanocrystalline TiO2 films with regard to optimizing device efficiency. 相似文献