首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a strategy for the analysis of cell surface carbohydrate expression patterns using lectin arrays fabricated on gold surfaces. Antibody and glycoprotein binding experiments showed that the lectins were effectively immobilized on the surface and retained their carbohydrate-binding specificities. The approach was demonstrated in the analysis of carbohydrate expression on two mammalian cell lines.  相似文献   

2.
The study of glycobiology has been seriously hampered due to lack of an ideal assay tool. This work proposes a robust carbohydrate monolayer platform to solve the problems of active site inaccessibility and lectin denaturation associated with protein arrays reported for detection of cell surface carbohydrates and develops a convenient method for monitoring cell surface carbohydrate sites of interest, with high sensitivity, acceptable rapidity, low cost, and excellent extensibility. It utilizes the competitive binding of solid-surface-confined and cell-surface-residing carbohydrates to quantum dot labeled carbohydrate recognition protein and subsequent voltammetric quantification of the metal signature. The mannan monolayer strategy exhibited sensitive response to K562 cells and possessed potential specificity due to the specific interaction between lectin and corresponding carbohydrate. By comparing the competitive binding of K562 cells with mannan in solutions, the average Con A binding capacity of a single K562 cell could be estimated to correspond to 6.9 pg or 2.3 x 10(10) mannose moieties. This strategy integrates the advantages of surface assembly, nanotechnology, bioconjugate techniques, and electrochemical detection and can be expanded for profiling cell surface carbohydrates and high-throughput multiple detection by simultaneously using more pairs of lectin and carbohydrate owing to the multiple coding capability of QDs, which provides an important protocol for the quantitative evaluation of cell surface carbohydrate sites.  相似文献   

3.
In this report, we demonstrate a versatile method for the immobilization and patterning of unmodified carbohydrates onto glass substrates. The method employs a novel self-assembled monolayer to present photoactive phthalimide chromophores at the air-monolayer interface. Upon exposure to UV radiation, the phthalimide end-groups graft to surface-adsorbed carbohydrates, presumably by a hydrogen abstraction mechanism followed by radical recombination to form a covalent bond. Immobilized carbohydrate thin films are evidenced by fluorescence, ellipsometry and contact-angle measurements. Surface micropatterns of mono-, oligo-, and polysaccharides are generated by exposure through a contact photomask and are visualized by condensing water onto the surface. The efficiency of covalent coupling is dependent on the thermodynamic state of the surface. The amount of surface-grafted carbohydrate is enhanced when carbohydrate surface interactions are increased by the incorporation of amine-terminated molecules into the monolayer. Glass substrates modified with mixed monolayers of this nature are used to construct carbohydrate microarrays by spotting the carbohydrates with a robot and subsequently illuminating them with UV light to covalently link the carbohydrates. Surface-immobilized polysaccharides display well-defined antigenic determinants for antibody recognition. We demonstrate, therefore, that this novel technology combines the ability to create carbohydrate microarrays using the current state-of-the-art technology of robotic microspotting and the ability to control the shape of immobilized carbohydrate patterns with a spatial resolution defined by the UV wavelength and a shape defined by a photomask.  相似文献   

4.
Carbohydrates play a major role in many recognition events, such as blood coagulation, immune response, fertilization, cell growth, embryogenesis, and cellular signal transfer, which are essential for the survival of living entities. Synthetic carbohydrate-based polymers, so-called glycopolymers, are emerging as important well-defined tools for investigating carbohydrate-based biological processes and for simulating various functions of carbohydrates. In this work, we present a facile strategy for the formation of glycopolymer tethered on polypropylene microporous membrane surface. Acrylamide was grafted onto the polypropylene microporous membrane surface by photoinduced graft polymerization in the presence of benzophenone. The amide groups of grafted poly(acrylamide) were then transformed to primary amine groups by the Hofmann rearrangement reaction. Quantificational evaluation of the rearrangement reaction was carried out by ninhydrin method and mass weighting. Sugar moieties were coupled with the grafted functional layer to form glycopolymer by the reaction between primary amine groups and carbohydrate lactones. The grafting of acrylamide, the conversion of amide groups to amine groups, and the coupling of sugar moieties were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy combined with surface morphology observation by scanning electron microscopy.  相似文献   

5.
Hydrazide group has a potential of immobilizing an antibody on a sensor surface in a way that ensures an optimal orientation and efficiency of the antibody. However, a multi-step chemical process, required for the preparation of a hydrazide group, is a barrier to its extensive application. This paper describes a new method to introduce a hydrazide group to a sensor surface by a one-step process using dodecanoic hydrazide. The method is based on an ability of the dodecanoic hydrazide to be incorporated into a hybrid bilayer membrane (HBM) layer, thereby presenting its hydrazide group to the surface. Liposome containing dodecanoic hydrazide was added to a hydrophobic self-assembled monolayer surface of a quartz crystal microbalance for the formation of a HBM. Then, the hydrazide group, presented in the surface of the HBM layer, was utilized for the oriented immobilization of an antibody via its carbohydrate moiety which was partially oxidized prior to the conjugation reaction. Activity and stable status of the incorporated dodecanoic hydrazide was revealed by the efficiency and reproducibility of the resulting immunosensor chip.  相似文献   

6.
糖芯片的研究进展   总被引:1,自引:0,他引:1  
邹兰  黄志纾  黄国贤  古练权 《有机化学》2009,29(11):1689-1699
糖芯片是生物芯片的一种,如基因芯片对于基因研究和蛋白质芯片对于蛋白质组研究一样,糖芯片在糖组学的研究中同样也将扮演重要的角色。本文系统介绍了糖芯片的制备流程及其应用,以及在糖芯片研发开发中的技术障碍。  相似文献   

7.
Liu X  Lu X  Hou Q  Lu Z  Yang K  Wang R  Xu S 《The journal of physical chemistry. B》2005,109(33):15828-15834
To characterize surface energy heterogeneity of fine particles, this paper presents an integrated strategy from a single adsorption isotherm. By coupling the well-known integral equation method and derivative isotherm summation (DIS) procedure based on a patchwise model, the newly proposed strategy could calculate adsorption energy distributions (AEDs) for different surface patches. Correspondingly, the surface heterogeneity of materials can be described by weighted summation of patch AEDs, that is, the total AED. The validity of this new method is confirmed by both tests of rutile nanoparticles and multiwalled carbon nanotubes (MWNTs). The total AED obtained by the new method agrees well with the result from solving the integral equation directly, and it shows that AED peaks can be assigned to specific energy patches of real surface exactly. Furthermore, a detailed comparison showed that some artificial oscillation in the results can be identified with the new strategy, and the patches with low area and high surface energy could be characterized as well. In conclusion, this strategy constructs a correspondence between derived AEDs and different patches of real surface, so it will be more effective to understand surface heterogeneity by using the adsorption probe method.  相似文献   

8.
Chemically selective liposomal surface functionalization and liposomal microarray fabrication using azide-reactive liposomes are described. First, liposome carrying PEG-triphenylphosphine was prepared for Staudinger ligation with azide-containing biotin, which was conducted in PBS buffer (pH 7.4) at room temperature without a catalyst. Then, immobilization and microarray fabrication of the biotinylated liposome onto a streptavidin-modified glass slide via the specific streptavidin/biotin interaction were investigated by comparing with directly formed biotin-liposome, which was prepared by the conventional liposome formulation of lipid-biotin with all other lipid components. Next, the covalent microarray fabrication of liposome carrying triphenylphosphine onto an azide-modified glass slide and its further glyco-modification with azide-containing carbohydrate were demonstrated for glyco-liposomal microarray fabrication via Staudinger ligation. Fluorescence imaging confirmed the successful immobilization and protein binding of the intact immobilized liposomes and arrayed glyco-liposomes. The azide-reactive liposome provides a facile strategy for membrane-mimetic glyco-array fabrication, which may find important biological and biomedical applications such as studying carbohydrate-protein interactions and toxin and antibody screening.  相似文献   

9.
Biological systems that involve enzyme catalysis at surfaces, particularly strategically important ones that involve insoluble substrates/products such as the cell wall and the starch granule, require analyses beyond classical solution state enzymology. Using a model system, we have demonstrated the real-time measurement of transglucosidase activity on a surface using surface plasmon resonance (SPR) spectroscopy. We monitored the extension of a (partially carboxymethylated) dextran surface with alternansucrase and sucrose as a glycosyl donor. Conditions were used where surface polymer synthesis rates were a function of enzyme concentration and proportional to the extent of enzyme binding to the surface. A method to determine the turnover number of the enzyme on the surface was also developed. The presence of a new amorphous polysaccharide was observed optically, detected by lectin binding and imaged by atomic force microscopy. This surface method will have utility in a wide range of carbohydrate enzyme systems including screens.  相似文献   

10.
A newly prepared [(ppy)2Ir(dcbpy)]+?PF6? (ppy: 2‐phenylpyridyl; dcbpy: 4,4′‐dicarboxy‐2,2′‐bipyridyl) and gold nanoparticle functionalized mesoporous silica nanoparticle (Au/Ir‐MSN) is reported. Based on the binding between concanavalin A (Con A) and mannose, the novel nanoparticle was applied to an ultrasensitive electrochemiluminescence (ECL) in situ cytosensing strategy and the dynamic evaluation of cell‐surface carbohydrate expression. The ECL activity of the presented Con A@Au/Ir‐MSN nanoprobe was greatly enhanced by employing a functionalized nanoparticle and graphene nanomaterial with an increased surface area and simultaneously improved electron‐transfer efficiency at the electrode interface. Under optimal conditions, the sandwich‐type ECL cytosensor showed a linear response to K562 cells at concentrations ranging from 1.0×102 to 1.0×106 cells mL?1 and realized a low detection limit of a single cell. The proposed method could also be successfully used for monitoring the dynamic variation of carbohydrate expression in cancer cells in response to external stimulation by an inhibitor.  相似文献   

11.
Cell surface carbohydrates, usually binding with other biomacromolecules (such as lipids and proteins), are involved in numerous biological functions, including cellular recognition, adhesion, cell growth regulation, and inflammation. Synthetic carbohydrate-based polymers, so-called glycopolymers, are emerging as important well-defined tools for investigating carbohydrate-based biological processes and for simulating various functions of carbohydrates. In this study, a novel two-step sequence for the generation of a glycopolymer layer tethered on a polypropylene microporous membrane is described. First, a UV-induced graft polymerization of 2-aminoethyl methacrylate hydrochloride (AEMA) was carried out on the membrane to generate an amino-functionalized surface, and the effects of polymerization factors (monomer/initiator concentration and UV irradiation time) on the grafting density were studied. Second, sugar moieties were bound with the grafted functional layer to form glycopolymer by the reaction between the amino groups on the membrane surface and carbohydrate lactones. Chemical analysis by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy combined with surface morphology observation by scanning electron microscopy confirmed the graft polymerization of AEMA and the formation of glycopolymer. The decreases of water contact angle and protein adsorption on the membrane revealed the enhancement of hydrophilicity and protein resistance due to the typical characteristics of the glycopolymer tethered on the surface. These results indicated that the novel sequence reported in this work is a facile process to form glycopolymer-modified surfaces.  相似文献   

12.
《中国化学快报》2023,34(11):108353
While superhydrophobic coatings have shown promise as potential anti-icing coatings, the surface roughness of these coatings is prone to damage during repeated icing-deicing cycles. Herein, two kinds of superhydrophobic anti-icing coatings are prepared from organic resin and micro-nano particles using two strategies, and their excellent anti-icing properties are also investigated. However, superhydrophobic surface I (SF1), prepared by first strategy, cannot be used for extended periods of time due to irreversible damage to the surface roughness during the icing–deicing process. Finite element simulations and experimental studies are preformed to investigate the fatal issue of such roughness damage. In contrast, the anti-icing properties of superhydrophobic surface II (SF2), prepared by second strategy, can easily regain through a simple sandpaper abrasion treatment even the surface roughness was damaged during the icing–deicing process. These exploratory results and SF2 preparation strategy provide a facile design of anti-icing coating, and the derived restorable anti-icing coating is expected to be useful for a wide application.  相似文献   

13.
Bioorthogonal chemistry refers to chemical reactions that can occur within a living system without altering native biochemical processes. Applications of this concept extend to studies on a group of biomolecules that includes glycans, proteins, and lipids. In this study, a strategy for isolating cell surface glycoproteins and based on bioorthogonal chemistry was employed to identify new cancer-related glycoproteins. A novel alkyne reagent containing one disulfide bond was synthesized for the enrichment of glycoproteins metabolized with peracetylated N-azidoacetylmannosamine, which was applied on three different cancer cell lines, and all isolated proteins were analyzed by high-performance liquid chromatography-tandem mass spectrometry. The strategy of purifying cell surface glycoproteins introduced in this article was shown to be reliable, and a total of 56 cell surface glycoproteins were identified. Neuronal cell adhesion molecule was found uniquely expressed in A549 lung adenocarcinoma, and its expression in non-small-cell lung carcinomas was detected by immunohistochemistry. Furthermore, a significant increase of neuronal cell adhesion molecule expression was identified in non-small-cell lung adenocarcinoma compared with adjacent noncancerous tissues, and could be a novel potential target and marker in cancer treatment and detection.  相似文献   

14.
This paper introduces strategies for enhancement of a surface plasmon resonance (SPR) signal by adopting colloidal gold nanoparticles (AuNPs) and a SiO2 layer on a gold surface. AuNPs on SiO2 on a gold surface were compared with an unmodified gold surface and a SiO2 layer on a gold surface with no AuNPs attached. The modified surfaces showed significant changes in SPR signal when biomolecules were attached to the surface as compared with an unmodified gold surface. The detection limit of AuNPs immobilized on a SPR chip was 0.1 ng mL−1 for the prostate-specific antigen (PSA), a cancer marker, as measured with a spectrophotometer. Considering that the conventional ELISA method can detect ∼10 ng mL−1 of PSA, the strategy described here is much more sensitive (∼100 fold). The enhanced shift of the absorption curve resulted from the coupling of the surface and particle plasmons by the SiO2 layer and the AuNPs on the gold surface.  相似文献   

15.
Antibody immobilization strategies (random, covalent, orientated and combinations of each) were examined to determine their performance in a surface plasmon resonance-based immunoassay using human fetuin A (HFA) as the model antigen system. The random antibody immobilization strategy selected was based on passive adsorption of anti-HFA antibody on 3-aminopropyltriethoxysilane (APTES)-functionalized gold (Au) chips. The covalent strategy employed covalent crosslinking of anti-HFA antibody on APTES-functionalized chips using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and sulfo-N-hydroxysuccinimide (SNHS). The orientation strategy used passive adsorption of protein A (PrA) on Au chips, with subsequent binding of the anti-HFA antibody in an orientated fashion via its fragment crystallisable (Fc) region. In the covalent-orientated strategy, PrA was first bound covalently, to the surface, which in turn, then binds the anti-HFA antibody in an orientated manner. Finally, in the most widely used strategy, covalent binding of anti-HFA antibody to carboxymethyldextran (CM5-dextran) was employed. This immobilization strategy gave the highest anti-HFA antibody immobilization density, whereas the highest HFA response was obtained with the covalent-orientated immobilization strategy. Therefore, the covalent-orientated strategy was the best for SPR-based HFA immunoassay and can detect 0.6-20.0 ng/mL of HFA in less than 10 min.  相似文献   

16.
[structure: see text] A novel strategy to prepare glycopeptide-oligonucleotide conjugates bearing a glycocluster is reported. The strategy utilizes a cyclodecapeptide scaffold as a key intermediate to anchor the carbohydrate cluster and the oligonucleotide through sequential oxime bond formation. The oligonucleotide glycocluster retains the binding affinity and recognition specificity for the target sequence. Furthermore, the conjugate shows enhanced binding to the specific lectins due to the cooperative effect produced by the carbohydrate cluster.  相似文献   

17.
 An exact analytical expression for the potential energy of the electrostatic interaction between a plate-like particle 1 and a cylindrical particle 2 of radius a 2 immersed in an electrolyte solution of Debye–Hückel parameter κ is derived on the basis of the linearized Poisson–Boltzmann equation without recourse to Derjaguin's approximation. Both particles may have either constant surface potential or constant surface charge density. In the limit of κa 2→0, in particular, the interaction between a plate with zero surface charge density and a cylinder having constant surface charge density becomes identical to the usual image interaction between a line charge (a charged rod of infinitesimal thickness) and an uncharged plate. Received: 22 September 1998  Accepted in revised form: 27 January 1999  相似文献   

18.
This paper reports a chemical strategy for preparing carbohydrate arrays and utilizes these arrays for the characterization of carbohydrate-protein interactions. Carbohydrate chips were prepared by the Diels-Alder-mediated immobilization of carbohydrate-cyclopentadiene conjugates to self-assembled monolayers that present benzoquinone and penta(ethylene glycol) groups. Surface plasmon resonance spectroscopy showed that lectins bound specifically to immobilized carbohydrates and that the glycol groups prevented nonspecific protein adsorption. Carbohydrate arrays presenting ten monosaccharides were then evaluated by profiling the binding specificities of several lectins. These arrays were also used to determine the inhibitory concentrations of soluble carbohydrates for lectins and to characterize the substrate specificity of beta-1,4-galactosyltransferase. Finally, a strategy for preparing arrays with carbohydrates generated on solid phase is shown. This surface engineering strategy will permit the preparation and evaluation of carbohydrate arrays that present diverse and complex structures.  相似文献   

19.
Pei R  Yang X  Wang E 《The Analyst》2001,126(1):4-6
In this paper, we present a novel strategy for improving the sensitivity of surface plasmon resonance immunosensing using a streptavidin-biotinylated protein complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. The complex can be formed in a cross-linking network of molecules so that the amplification of the response signal will be realized due to the big molecular size of the complex. The results show that the amplification strategy causes a dramatic improvement of the detection sensitivity. hIgG protein could be detected in the range of 0.005-10 micrograms ml-1.  相似文献   

20.
An analytical expression, which has some claim to be the simplest possible, is proposed for the potential governing a collinear reaction. It shows the desired qualitative features but, with only one available parameter, cannot fit a given surface accurately everywhere. The quality of fitting attainable is shown using the surface for the O + H2 reaction.Because of the simple form of this expression, it is possible to make broad generalizations about such reactions. From a plausible assumption about the parameter value the energy barrier and the transition state geometry can be predicted. These barriers agree well with those suggested by Johnston and Parr for hydrogen transfer reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号