首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reveals the fact that the O adatoms (O(ad)) adsorbed on the 5-fold Ti rows of rutile TiO(2)(110) react with CO to form CO(2) at room temperature and the oxidation reaction is pronouncedly enhanced by Au nano-clusters deposited on the above O-rich TiO(2)(110) surfaces. The optimum activity is obtained for 2D clusters with a lateral size of ~1.5 nm and two-atomic layer height corresponding to ~50 Au atoms∕cluster. This strong activity emerging is attributed to an electronic charge transfer from Au clusters to O-rich TiO(2)(110) supports observed clearly by work function measurement, which results in an interface dipole. The interface dipoles lower the potential barrier for dissociative O(2) adsorption on the surface and also enhance the reaction of CO with the O(ad) atoms to form CO(2) owing to the electric field of the interface dipoles, which generate an attractive force upon polar CO molecules and thus prolong the duration time on the Au nano-clusters. This electric field is screened by the valence electrons of Au clusters except near the perimeter interfaces, thereby the activity is diminished for three-dimensional clusters with a larger size.  相似文献   

2.
A novel, highly efficient, and stable water oxidation catalyst was prepared by a pH-controlled adsorption of Co(II) on ~10 nm diameter silica nanoparticles. A lower limit of ~300 s(-1) per cobalt atom for the catalyst turnover frequency in oxygen evolution was estimated, which attests to a very high catalytic activity. Electron microscopy revealed that cobalt is adsorbed on the SiO(2) nanoparticle surfaces as small (1-2 nm) clusters of Co(OH)(2). This catalyst is optically transparent over the entire UV-vis range and is thus suitable for mechanistic investigations by time-resolved spectroscopic techniques.  相似文献   

3.
Photochemistry of HI molecules on large Ar(n) and (H(2)O)(n), n ~ 100-500, clusters was investigated after excitation with 243 nm and 193 nm laser radiation. The measured H-fragment kinetic energy distributions pointed to a completely different photodissociation mechanism of HI on water than on argon clusters. Distinct features corresponding to the fragment caging (slow fragments) and direct exit (fast fragments) were observed in the spectra from HI photodissociation on Ar(n) clusters. On the other hand, the fast fragments were entirely missing in the spectrum from HI·(H(2)O)(n) and the slow-fragment part of the spectrum had a different shape from HI·Ar(n). The HI·(H(2)O)(n) spectrum was interpreted in terms of the acidic dissociation of HI on (H(2)O)(n) in the ground state, and hydronium radical H(3)O formation following the UV excitation of the ionically dissociated species into states of a charge-transfer-to-solvent character. The H(3)O generation was proved by experiments with deuterated species DI and D(2)O. The experiment was complemented by ab initio calculations of structures and absorption spectra for small HI·(H(2)O)(n) clusters, n = 0-5, supporting the proposed model.  相似文献   

4.
Reaction of a mixture of CuCl, PhSnCl(3) and PEt(2)Ph with S(SiMe(3))(2) in THF resulted initially in the unexpected synthesis of the ionic, mixed copper-tin sulfide cluster [Li(thf)(4)][Cu(19)S(28)(SnPh)(12)(PEt(2)Ph)(3)] in low yields. However, by adding NBu(4)Cl to the reaction solutions we were able to selectively synthesize the structurally similar cluster ion in (NBu(4))[Cu(19)S(28)(SnPh)(12)(PEt(2)Ph)(3)]. Structural characterization by single crystal X-ray analysis reveals that the cluster anions consist in principle of a copper sulfide core decorated by PhSn(3+) groups. Although additional phosphine ligands are attached to copper atoms the clusters possess an open 'Cu(3)S(3)' face mostly protected by the [Li(thf)(4)](+) and (NBu(4))(+) counterions in the crystal structure. The cluster (NBu(4))[Cu(19)S(28)(SnPh)(12)(PEt(2)Ph)(3)] displays near-infrared, temperature-dependent photoluminescence at ~820-930 nm in the solid state, which is especially bright at temperatures below ~100 K.  相似文献   

5.
Organogold clusters Au(54)(C(2)Ph)(26) were selectively synthesized by reacting polymer-stabilized Au clusters (1.2 ± 0.2 nm) with excess phenylacetylene in chloroform.  相似文献   

6.
The excited state hydrogen transfer (ESHT) reaction in pyrrole-ammonia clusters (PyH[middle dot](NH(3))(n), n = 2-5) at excitation wavelengths below 218 nm down to 199 nm, has been studied using a combination of velocity map imaging and non-resonant detection of the NH(4)(NH(3))(n-1) products. Special care has been taken to avoid evaporation of solvent molecules from the excited clusters by controlling the intensity of both the excitation and probing lasers. The high resolution translational energy distributions obtained are analyzed on the base of an impulsive mechanism for the hydrogen transfer, which mimics the direct N-H bond dissociation of the bare pyrrole. In spite of the low dissociation wavelengths attained (~200 nm) no evidence of hydrogen-loss statistical dynamics has been observed. The effects of clustering of pyrrole with ammonia molecules on the possible statistical decomposition channels of the bare pyrrole are discussed.  相似文献   

7.
[Ca(NH2)2]n(n=1~5)团簇的密度泛函理论研究   总被引:2,自引:0,他引:2  
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对[Ca(NH2)2]n (n=1~5)团簇各种可能的构型进行几何结构优化, 预测了各团簇的最稳定结构. 并对最稳定结构的振动特性、成键特性、电荷特性等进行了理论研究. 结果表明: 团簇易形成环状结构, 以金属Ca原子团簇作为骨架, NH2基结合在金属团簇骨架上, 并主要是Ca—N成键和Ca—Ca成键. 团簇中Ca—N键长为0.225~0.257 nm, Ca—Ca键长为0.312~0.354 nm, N—H键长为0.102~0.103 nm, H—N—H键角为102.9°~104.2°; 团簇中Ca原子的自然电荷在1.657e~1.720e之间, N原子的自然电荷在-1.543e~-1.592e之间, H原子的自然电荷在0.349e~0.367e之间, Ca原子和NH2基之间相互作用呈现较强的离子性;对比团簇和晶体的结构及IR谱表明, NH2基在团簇和晶体中的结构基本一致.  相似文献   

8.
In this work, structures and thermodynamic properties of [CuCl(3)](-) and [CuCl(4)](2-) hydrates in aqueous solution were investigated using density functional theory and ab initio methods. Contact ion pair (CIP) and solvent-shared ion pair (SSIP) structures were both taken into account. Our calculations suggest that [CuCl(3)(H(2)O)(n)](-) clusters might favor a four-coordinated CIP structure with a water molecule coordinating with the copper atom in the equatorial position for n = 3 and 4 in aqueous solution, whereas the four-coordinated SSIP structure with one chloride atom dissociated becomes more stable as n increases to 5. For the [CuCl(4)](2-) cluster, the four-coordinated tetrahedron structure is more stable than the square-planar one, whereas for [CuCl(4)(H(2)O)(n)](2-) (n ≥ 1) clusters, it seems that four-coordinated SSIP structures are slightly more favorable than CIP structures. Our calculations suggest that Cu(2+) perhaps prefers a coordination number of 4 in CuCl(2) aqueous solution with high Cl(-) concentrations. In addition, natural bond orbital (NBO) calculations suggest that there is obvious charge transfer (CT) between copper and chloride atoms in [CuCl(x)](2-x) (x = 1-4) clusters. However, compared with that in the [CuCl(2)](0) cluster, the CT between the copper and chloride atoms in [CuCl(3)](-) and [CuCl(4)](2-) clusters becomes negligible as the number of attached redundant Cl(-) ions increases. This implies that the coordination ability of Cl(-) is greatly weakened for [CuCl(3)](-) and [CuCl(4)](2-) clusters. Electronic absorption spectra of these different hydrates were obtained using long-range-corrected time-dependent density functional theory. The calculated electronic transition bands of the four-coordinated CIP conformer of [CuCl(3)(H(2)O)(n)](-) for n = 3 and 4 are coincident with the absorption of [CuCl(3)](-)(aq) species (~284 and 384 nm) resolved from UV spectra obtained in CuCl(2) (ca. 10(-4) mol·kg(-1)) + LiCl (>10 mol·kg(-1)) solutions, whereas the calculated bands of [CuCl(3)(H(2)O)(n)](-) in their most stable configurations are not when n = 0 - 2 or n > 4, which means that the species [CuCl(3)](-)(aq) exists in those CuCl(2) aqueous solutions in which the water activity is neither too low nor too high. The calculated bands of [CuCl(4)(H(2)O)(n)](2-) clusters correspond to the absorption spectra (~270 and 370 nm) derived from UV measurements only when n = 0, which suggests that [CuCl(4)](2-)(aq) species probably exist in environments in which the water activity is quite low.  相似文献   

9.
2,2,3-三甲基丁烷(C7H16)晶体的成核动力学   总被引:1,自引:0,他引:1  
High temperature solid phase I of 2,2,3-trimethylbutane(C7H16)(TMB) was investigated by X-ray powder diffraction. The electron diffraction technique for observing the kinetics of phase transitions in the condensed matter has been applied to study the freezing of TMB clusters with diameter of~13nm. Cluster beams were generated from the supersonically expanded TMB vapor with mole fraction of 0.01 in neon carrier gas. The freezing evolution was monitored by electron diffraction in interval of 7-9 μs. Clusters with an average size of ~5,500 molecules were observed to freeze into the solid phase I at a nucleation rate of 3.5 × 1028 m-3•s- 1 at the freezing temperature of clusters, ~170K. The estimated growth rate of postcritical nuclei indicates that the observed nucleation in the present experiment corresponds to mononuclear freezing of the clusters into single crystals of solid phase I.  相似文献   

10.
The aggregation behavior of the newly synthesized gadofullerene magnetic resonance imaging (MRI) contrast agent, i.e., Gd@C(82)O(6)(OH)(16)(NHCH(2)CH(2)COOH)(8) (abbreviated as AAD-EMF), was studied in detail by dynamic light scattering, scanning electron microscopy, T(1)-weighted magnetic resonance, and atomic force microscopy. It was revealed that the AAD-EMF aggregation in aqueous solution is pH-dependent. At pH 2, the AAD-EMF first self-assemble to form ca. 30 nm small clusters, and then dozens of the small clusters further aggregate to form large grapelike particles. At pH 7, the aggregates are also ca. 30 nm small clusters, but they are hard to further aggregate except for forming some cluster dimers or trimers, so AAD-EMF aggregates have a narrow size distribution by this time. At pH 9, the AAD-EMF aggregations cover a large range of continuous hydrodynamic diameters from 30 to 2000 nm. On the basis of the above observations, the aggregating mechanism of AAD-EMF under different pH values was proposed by concurrently considering the hydrogen-bonding effect and the dipolar interactions between AAD-EMF.  相似文献   

11.
The electronic structure and photochemistry of the O(2n)(-)(H(2)O)(m), n = 1-6, m = 0-1 cluster anions is investigated at 532 nm using photoelectron imaging and photofragment mass-spectroscopy. The results indicate that both pure oxygen clusters and their hydrated counterparts with n ≥ 2 form an O(4)(-) core. Fragmentation of these clusters yields predominantly O(2)(-) and O(2)(-)·H(2)O anionic products, with the addition of O(4)(-) fragments for larger parent clusters. The fragment autodetachment patterns observed for O(6)(-) and larger O(2n)(-) species, as well as some of their hydrated counterparts, indicate that the corresponding O(2)(-) fragments are formed in excited vibrational states (v ≥ 4). Yet, surprisingly, the unsolvated O(4)(-) anion itself does not show fragment autodetachment at 532 nm. It is hypothesized that the vibrationally excited O(2)(-) is formed in the intra-cluster photodissociation of the O(4)(-) core anion via a charge-hopping electronic relaxation mechanism mediated by asymmetric solvation of the nascent photofragments: O(4)(-) → O(2)(-)(X(2)Π(g)) + O(2)(a(1)Δ(g)) → O(2)(X(3)Σ(g)(-)) + O(2)(-)(X(2)Π(g)). This process depends on the presence of solvent molecules and leads to vibrationally excited O(2)(-)(X(2)Π(g)) products.  相似文献   

12.
The syntheses are reported for two novel Tb(3+) heterotrimetallic cyanometallates, K(2)[Tb(H(2)O)(4)(Pt(CN)(4))(2)]Au(CN)(2)·2H(2)O (1) and [Tb(C(10)N(2)H(8))(H(2)O)(4)(Pt(CN)(4))(Au(CN)(2))]·1.5C(10)N(2)H(8)·2H(2)O (2) (C(10)N(2)H(8) = 2,2'-bipyridine). Both compounds have been isolated as colorless crystals, and single-crystal X-ray diffraction has been used to investigate their structural features. Crystallographic data (MoKα, λ = 0.71073 ?, T = 290 K): 1, tetragonal, space group P4(2)/nnm, a = 11.9706(2) ?, c = 17.8224(3) ?, V = 2553.85(7) ?(3), Z = 4; 2, triclinic, space group P1, a = 10.0646(2) ?, b = 10.7649(2) ?, c = 17.6655(3) ?, α = 101.410(2)°, β = 92.067(2)°, γ = 91.196(2)°, V = 1874.14(6) ?(3), Z = 2. For the case of 1, the structure contains Au(2)Pt(4) hexameric noble metal clusters, while 2 includes Au(2)Pt(2) tetrameric clusters. The clusters are alike in that they contain Au-Au and Au-Pt, but not Pt-Pt, metallophilic interactions. Also, the discrete clusters are directly coordinated to Tb(3+) and sensitize its emission in both solid-state compounds, 1 and 2. The Photoluminescence (PL) spectra of 1 show broad excitation bands corresponding to donor groups when monitored at the Tb(3+) ion f-f transitions, which is typical of donor/acceptor energy transfer (ET) behavior in the system. The compound also displays a broad emission band at ~445 nm, assignable to a donor metal centered (MC) emission of the Au(2)Pt(4) clusters. The PL properties of 2 show a similar Tb(3+) emission in the visible region and a lack of donor-based emission at room temperature; however, at 77 K a weak, broad emission occurs at 400 nm, indicative of uncoordinated 2,2'-bipyridine, along with strong Tb(3+) transitions. The absolute quantum yield (QY) for the Tb(3+) emission ((5)D(4) → (7)F(J (J = 6-3))) in 1 is 16.3% with a lifetime of 616 μs when excited at 325 nm. In contrast the weak MC emission at 445 nm has a quantum yield of 0.9% with a significantly shorter lifetime of 0.61 μs. For 2 the QY value decreases to 9.3% with a slightly shorter lifetime of 562 μs. The reduced QY in 2 is considered to be a consequence of (1) the slightly increased donor-acceptor excited energy gap relative to the optimal gap suggested for Tb(3+) and (2) Tb(3+) emission quenching via a bpy ligand-to-metal charge transfer (LMCT) excited state.  相似文献   

13.
Hybrid nanobeads containing either a manganese-oxo or manganese-iron-oxo cluster have been prepared via the miniemulsion polymerization technique. Two new ligand substituted oxo clusters, Mn(12)O(12)(VBA)(16)(H(2)O)(4) and Mn(8)Fe(4)O(12)(VBA)(16)(H(2)O)(4) (where VBA = 4-vinylbenzoate), have been prepared and characterized. Polymerization of the functionalized metal-oxo clusters with styrene under miniemulsion conditions produced monodispersed polymer nanoparticles as small as ~60 nm in diameter. The metal-oxo polymer nanobeads were fully characterized in terms of synthetic parameters, composition, structure, and magnetic properties.  相似文献   

14.
Upon exposure to Fe(CO)(5), the formation of pure cubic Fe nanocrystals with dimensions up to ~75 nm is reported on ultra-thin SiO(x) films (thickness ≈ 0.5 nm) on Si(001), which have been prepared in situ under UHV conditions. The active centers for initial decomposition of Fe(CO)(5) resulting in the growth of the Fe clusters are proposed to be SiO sites. After nucleation at these sites, further crystal growth is observed due to autocatalytic dissociation of Fe(CO)(5) at room temperature. The density of the Fe clusters can be increased by irradiating the surface with a focused electron beam (15 keV) prior to gas exposure. The formation of the active SiO sites upon electron irradiation is attributed to oxygen desorption via the Knotek-Feibelman mechanism.  相似文献   

15.
The photochemistry of mass selected CO(2) (-)(H2O)(m), m=2-40 cluster anions is investigated using 266 nm photofragment spectroscopy and theoretical calculations. Similar to the previous 355 nm experiment [Habteyes et al., Chem. Phys. Lett. 424, 268 (2006)], the fragmentation at 266 nm yields two types of anionic products: O(-)(H2O)(m-k) (core-dissociation products) and CO(2) (-)(H2O)(m-k) (solvent-evaporation products). Despite the same product types, different electronic transitions and dissociation mechanisms are implicated at 355 and 266 nm. The 355 nm dissociation is initiated by excitation to the first excited electronic state of the CO(2) (-) cluster core, the 1 (2)B(1)(2A") state, and proceeds via a glancing Renner-Teller intersection with the ground electronic state at a linear geometry. The 266 nm dissociation involves the second excited electronic state of CO(2) (-), the 2 (2)A(1)(2A') state, which exhibits a conical intersection with the 3 (2)B(2)(A') state at a bent geometry. The asymptotic O(-) based products are believed to be formed via this 3 (2)B(2)(A') state. By analyzing the fragmentation results, the bond dissociation energy of CO(2) (-) to O(-)+CO in hydrated clusters (m> or =20) is estimated as 2.49 eV, compared to 3.46 eV for bare CO(2) (-). The enthalpy of evaporation of one water molecule from asymptotically large CO(2) (-)(H(2)O)(m) clusters is determined to be 0.466+/-0.001 eV (45.0+/-0.1 kJ/mol). This result compares very favorably with the heat of evaporation of bulk water, 0.456 eV (43.98 kJ/mol).  相似文献   

16.
The effect of excitation energy on the lifetimes of the charge-transfer-to-solvent (CTTS) states of small (4 ≤ n ≤ 10) iodide-doped water and alcohol clusters was explored using femtosecond time-resolved photoelectron imaging. Excitation of the CTTS state at wavelengths ranging from 272 to 238 nm leads to the formation of the I···(ROH)(n)(-) (R═H-, CH(3)-, and CH(3)CH(2)-) species, which can be thought of as a vibrationally excited bare solvent cluster anion perturbed by an iodine atom. Autodetachment lifetimes for alcohol-containing clusters range from 1 to 71 ps, while water clusters survive for hundreds of ps in this size range. Autodetachment lifetimes were observed to decrease significantly with increasing excitation energy for a particular number and type of solvent molecules. The application of Klots' model for thermionic emission from clusters to I(-)(H(2)O)(5) and I(-)(CH(3)OH)(7) qualitatively reproduces experimental trends and reveals a high sensitivity to energy parametrization while remaining relatively insensitive to the number of vibrational modes. Experimental and computational results therefore suggest that the rate of electron emission is primarily determined by the energetics of the cluster system rather than by details of molecular structure.  相似文献   

17.
A new two-dimensional inorganic-organic hybrid solid, formulated as Cd(17)S(4)(SPh)(25)B(im)(4) (SPh = benzenethiolate, im = imidazolate), has been synthesized under solvothermal conditions. The structure features a 6(3) network with 17-nuclear cadmium clusters linked by B(im)(4)(-) ligands. The compound is a semiconductor with the band gap of 2.66 eV and displays a green luminescence upon excitation at 390 nm.  相似文献   

18.
The microsolvation of cobalt and nickel dications by acetonitrile and water is studied by measuring photofragment spectra at 355, 532 and 560-660 nm. Ions are produced by electrospray, thermalized in an ion trap and mass selected by time of flight. The photodissociation yield, products and their branching ratios depend on the metal, cluster size and composition. Proton transfer is only observed in water-containing clusters and is enhanced with increasing water content. Also, nickel-containing clusters are more likely to undergo charge reduction than those with cobalt. The homogeneous clusters with acetonitrile M(2+)(CH(3)CN)(n) (n = 3 and 4) dissociate by simple solvent loss; n = 2 clusters dissociate by electron transfer. Mixed acetonitrile/water clusters display more interesting dissociation dynamics. Again, larger clusters (n = 3 and 4) show simple solvent loss. Water loss is substantially favored over acetonitrile loss, which is understandable because acetonitrile is a stronger ligand due to its higher dipole moment and polarizability. Proton transfer, forming H(+)(CH(3)CN), is observed as a minor channel for M(2+)(CH(3)CN)(2)(H(2)O)(2) and M(2+)(CH(3)CN)(2)(H(2)O) but is not seen in M(2+)(CH(3)CN)(3)(H(2)O). Studies of deuterated clusters confirm that water acts as the proton donor. We previously observed proton loss as the major channel for photolysis of M(2+)(H(2)O)(4). Measurements of the photodissociation yield reveal that four-coordinate Co(2+) clusters dissociate more readily than Ni(2+) clusters whereas for the three-coordinate clusters, dissociation is more efficient for Ni(2+) clusters. For the two-coordinate clusters, dissociation is via electron transfer and the yield is low for both metals. Calculations of reaction energetics, dissociation barriers, and the positions of excited electronic states complement the experimental work. Proton transfer in photolysis of Co(2+)(CH(3)CN)(2)(H(2)O) is calculated to occur via a (CH(3)CN)Co(2+)-OH(-)-H(+)(NCCH(3)) salt-bridge transition state, reducing kinetic energy release in the dissociation.  相似文献   

19.
The employment of pyridine-2-carbaldehyde oxime (paoH) in zinc(II) benzoate chemistry, in the absence or presence of azide ions, is described. The syntheses, crystal structures and spectroscopic characterization are reported for the complexes [Zn(O(2)CPh)(2)(paoH)(2)] (1), [Zn(12)(OH)(4)(O(2)CPh)(16)(pao)(4)] (2) and [Zn(4)(OH)(2)(pao)(4)(N(3))(2)] (3). The Zn(II) centre in octahedral 1 is coordinated by two monodentate PhCO(2)(-) groups and two N,N'-chelating paoH ligands. The metallic skeleton of 2 describes a tetrahedron encapsulated in a distorted cube. The {Zn(12)(μ-OH)(4)(μ(3)-ΟR)(4)}(16+) core of the cluster can be conveniently described as consisting of a central {Zn(4)(μ(3)-ΟR)(4)}(4+) cubane subunit (RO(-) = pao(-)) linked to four {Zn(2)(μ-OH)}(3+) subunits via the OH(-) group of each of the latter, which becomes μ(3). The molecule of 3 has an inverse 12-metallacrown-4 topology. Two triply bridging hydroxido groups are accommodated into the metallacrown ring. Each pao(-) ligand adopts the η(1)?:?η(1)?:?η(1)?:?μ coordination mode, chelating one Zn(II) atom and bridging a Zn(II)(2) pair. Complexes 1 and 2 display photoluminescence with maxima at ~355 nm and ~375 nm, upon maximum excitation at 314 nm; the origin of the photoluminescence is discussed.  相似文献   

20.
Positively-charged crystalline zinc hydroxide nanostrands with a diameter of 2 nm and a length of a few micrometres rapidly grew in dilute aqueous solution of zinc nitrate and aminoethanol. The nanostrands were composed of hexagonal clusters of [Zn(61)(OH)(116)(H(2)O)(n)](6+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号