首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The different thermal expansion coefficients and lattice mismatch between ZnO and Al may produce residual stress in Al-ZnO (AZO) thin films. Annealing processes can be applied to modulate this residual stress. In this study, three different rapid thermal annealing (RTA) temperatures (350, 450, and 600 °C) were applied to an AZO thin film, prepared using sol–gel method. The mechanical properties, optical properties, and structure of the AZO thin film were investigated experimentally. The results show that increasing the RTA temperature increased the Young’s modulus and hardness of the films. The grain size of the films also increased with increasing RTA temperature. However, the film thickness and shear stress component decreased with increasing RTA temperature. Both compressive and tensile stress decreased gradually with increasing film thickness after RTA treatment. It was demonstrated that the use of a relatively high RTA temperature can effectively relax the residual stress in AZO thin films.  相似文献   

2.
In this work, we investigated the influence of annealing on the crystallinity, microstructures, and photoluminescence (PL) properties of ZnO nanoparticles prepared by sol–gel method. The annealing was carried out both in air and vacuum. X-ray powder diffraction, scanning electron microscopy, and ultraviolet–visible spectroscopy were used to characterize the crystal structures, diameter, surface morphology, and PL properties of ZnO nanoparticles. It has been found that both the as-grown and annealed ZnO nanoparticles had a hexagonal wurtzite crystal structure, and their average diameter and crystallinity increased with the anneal time and temperature. Pure blue-emitting behavior was observed in all samples. The emission intensity of ZnO nanoparticles was found to be enhanced after annealing, but it was highly dependent on the annealing conditions. Optimal annealing conditions both in air and vacuum were obtained for achieving maximum emission intensity in the ZnO nanoparticles. The dependence of PL properties of the ZnO nanoparticles on the annealing conditions was discussed.  相似文献   

3.
Al–B–NiO thin films were prepared using the sol–gel process and deposited on Indium tin oxide (ITO)-coated glass substrates via the dip-coating technique for the purpose of developing high performance electrochromic materials. The influence of the anneal on the structural and electrochromic properties of Al–B–NiO films is reported. Thermogravimetry (TG) and differential thermal analysis (DTA), cyclic voltammetry measurements (CV), UV spectrophotometer, atomic force microscopy (AFM) and X-ray diffraction (XRD) have been used to investigate the structural and electrochromic properties. The thickness of the films was determined by spectrophotometric analysis in 350–1,000 nm wavelength. Results showed that the Al–B–NiO thin films treated at high temperature have both the excellent electrochromic properties and good reversibility. The transmittance change (ΔT) of the film treated at 500 °C reaches still ~50% at the wavelength of 550 nm. The microstructure and the surface morphology were considered to play an important role in the electrochromic properties with different temperatures.  相似文献   

4.
This study is concerned with the preparation of hydrolytically active heteroligand complex [Ti(OC4H9)3.61(O2C5H7)0.39] from titanium butoxide and acetylacetone and with the gel formation kinetics in a solution of this complex upon hydrolysis and polycondensation. Single-layer and double-layer thin films of a solution of this precursor were coated on polished silicon substrates using the dip-coating method. The crystallization of nanostructured titania films during the heat treatment of these xerogel coatings was studied using various protocols; the anatase–rutile phase transition temperature was found to depend on the film thickness. The effects of the precursor solution viscosity on the film thickness and crystallite size were determined.  相似文献   

5.
Yttrium-doped ZnO gel was spin-coated on the SiO2/Si substrate. The as-prepared ZnO:Y (YZO) thin films then underwent a rapid thermal annealing (RTA) process conducted at various temperatures. The structural and photoluminescence characteristics of the YZO films were discussed thereafter. Our results indicated that the grain size of YZO thin films being treated with various annealing temperatures became smaller as compared to the ones without being doped with yttrium. Furthermore, unlike other ZnO films, the grains of YZO thin films appeared to separate from one another rather than aggregating together as both types of the films were annealed under the same environment. The photoluminescence characteristic measured showed that the UV emission was the only radiation obtained. However, the UV emission intensity of YZO thin film was much stronger than that of the ZnO thin film after annealing them with the same condition. It was also found that the intensity increased with an increase in the annealing temperature, which was caused by the exciton generated and the texture surface of the YZO thin film.  相似文献   

6.
Silica, alumina and silica-alumina composite films were deposited on Kapton substrate via sol–gel method and their atomic oxygen (AO) erosion resistance was test in a ground-based AO simulator. The surface morphology and the structure of as-deposited films were investigated by scanning electronic microscope, X-ray photoelectron spectroscopy, and Fourier transformed infrared spectroscopy. After AO exposure, more cracks and micro-pores appear on the surface of silica and alumina films, respectively. For the silica-alumina composite films, their toughness and densification are good, and the stable interface is formed between the alumina and silica phases. Therefore, the silica-alumina composite-coated Kapton shows the best AO resistance and the erosion yield is two orders of magnitude less than that of pristine Katpon. Moreover, the composite-coated Kapton remains optically stable under AO exposure.  相似文献   

7.
8.
9.
Using different precursor preparation, heating methods, and initial layers, this work investigated the relation between the micro-structural and electrical properties of ZnO:Al (AZO) films prepared by sol–gel method on glass and silicon substrates. It was found that adding monoethanolamine (MEA), using initial layers, or an intentionally produced steep temperature gradient obviously promoted film growth along the (002) direction. However, the carrier mobility rose only a little while the carrier concentration was not affected or even reduced. Generally speaking, the film conductivity was not evidently improved. It could be concluded that all three methods are advantageous for enhancing the crystallographic quality and therefore the mobility of the AZO films, but the major reason for the poor conductivity of the sol–gel derived ZnO films was the low activation of the dopant, which is the key factor for further improvements and should be solved first.  相似文献   

10.
11.
The advantages of the sol–gel technology are undoubtedly simplicity and versatility. It enables to obtain for example oxides in the form of layers, powders, monoliths or fibers. These materials can be successfully applied for sensing purposes due to their properties such as transparency, porosity, and high surface areas. In this article, the basis of operation of mainly optical and semiconductor sensors are presented. A brief overview of various kinds of sensors is submitted. The utility of optical fibers and planar waveguides in these systems is discussed. The paper contains also some results obtained by the authors in the field of thin film-based sensors.  相似文献   

12.
Titanium dioxide thin films have been synthesized by sol–gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 °C. The influence of surfactant and annealing temperature on optical properties of TiO2 thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO2 films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO2 films was estimated by Tauc's method at different annealing temperature.  相似文献   

13.
14.
15.
A new approach for the deposition of sol–gel films on semiconducting substrate using photo-electrochemical technique is presented. The deposition is based on accelerating sol–gel condensation reaction by the catalyzing effect of electrochemically generated OH ions when applying both negative potentials and light irradiation onto p-type semiconductors. Results show that both the negative shift in potential and the increase in light intensity facilitate the deposition kinetics of silica sol–gel films. Surface patterning is further achieved with the assistance of a laser.  相似文献   

16.
Silver-doped ZnO thin films with various loadings of Ag in the range of 0–10 mol% were prepared by the sol–gel dip-coating method. All prepared films show X-ray powder diffraction patterns that matched with ZnO in its würtzite structure. The grain size decreased as the Ag loading increased. The prepared films, under UV blacklight illumination, produced a photocatalytic degradation of methylene blue, rhodamine B and reactive orange solutions. Furthermore, they inhibited the growth of Escherichia coli bacteria under UV blacklight irradiation and to a lesser extent in dark conditions. The photocatalytic and antibacterial activities of the prepared films increased with Ag loading, presumably because Ag enhanced the efficiency of generation of superoxide anion radicals (O2 ) and hydroxyl radicals (OH).  相似文献   

17.
In this study, we investigated the effects of different heating processes on the structural, electrical and chemical properties of ZnO:Ga (GZO) films from the viewpoint of nucleation and growth behaviors. An infrared heating furnace and a traditional tube furnace were employed for the homogeneous and heterogeneous nucleation of GZO films. XRD patterns demonstrated that the preferential growth orientation of both kinds of GZO films is still the (002) direction. XPS data implied that the infrared heating process enables more uniform distribution of the dopant material and retards the oxidization of gallium in grain boundary areas. At the same time, the textured crystallite might provide a free tunnel for oxygen diffusion. Thus, the activation of free charge carriers could be more efficient when the GZO films were annealed under vacuum. As a result, the samples annealed by the infrared heating furnace had a noticeably high carrier concentration. Although the mobility was slightly smaller than that of the samples annealed by the tube furnace, film resistivity dropped obviously in general.  相似文献   

18.
Surface-patterned ZnO thin films were fabricated by direct imprinting on ZnO sol and subsequent annealing process. The polymer-based ZnO sols were deposited on various substrates for the nanoimprint lithography and converted to surface-patterned ZnO gel films during the thermal curing nanoimprint process. Finally, crystalline ZnO films were obtained by subsequent annealing of the patterned ZnO gel films. The optical characterization indicates that the surface patterning of ZnO thin films can lead to an enhanced transmittance. Large-scale ZnO thin films with different patterns can be fabricated by various easy-made ordered templates using this combination of sol–gel and nanoimprint lithography techniques.  相似文献   

19.
20.
Al-doped zinc oxide (AZO) films were prepared by a wet-chemical coating technique, their microstructure and crystal growth were characterized as a function of the single layer thickness. When similar final thicknesses are attained by more multiple subsequent coating-firing cycles, film porosity is reduced from over 14 to 2 %. Simultaneously the AZO crystallite size is increased from approximately 23 to 60 nm, a preferential c-axis oriented growth is observed. Different substrates (soda-lime glass, soda-lime glass with a SiO2 barrier coating, borosilicate glass and alkali-free display glass) were used and the resulting AZO films were compared. It is found that the substrate composition primarily affects grain growth and subsequently the electrical performance of the AZO films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号