首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Prabir Pal  M.K. Dalai  I. Ulfat 《Surface science》2011,605(9-10):875-877
The valence band electronic structure of Pr0.5Sr0.5MnO3 has been investigated across its paramagnetic metallic (PMM)–ferromagnetic metallic (FMM)–antiferromagnetic insulator (AFMI) transition. Using surface sensitive high resolution photoemission we have conclusively demonstrated the presence of a pseudogap of magnitude 80 meV in the near Fermi level electronic spectrum in the PMM and FMM phases and finite intensity at the Fermi level in the charge ordering (CO)-AFMI phase. The pseudogap behavior is explained in terms of the strong electron–phonon interaction and the formation of Jahn Teller (JT) polarons, indicating the charge localizations. The finite intensity at the Fermi level in the insulating phase showed a lack of charge ordering in the surface of the Pr0.5Sr0.5MnO3 samples.  相似文献   

2.
In this work we present the results of comparative XPS and PYS studies of electronic properties of the space charge layer of the L-CVD SnO2 thin films after air exposure and subsequent UHV annealing at 400 °C, with a special emphasis on the interface Fermi level position.From the centre of gravity of binding energy of the main XPS Sn 3d5/2 line the interface Fermi level position EF − Ev in the band gap has been determined. It was in a good correlation with the value estimated from the offset of valence band region of the XPS spectrum, as well as from the photoemission yield spectroscopy (PYS) measurements. Moreover, from the valence band region of the XPS spectrum and PYS spectrum two different types of filled electronic band gap states of the L-CVD SnO2 thin films have been derived, located at 6 and 3 eV with respect to the Fermi level.  相似文献   

3.
The valence band and the core levels of the YNi4Cu compound are studied using the X-ray photoemission spectroscopy. The valence band is compared with the theoretical calculation by the spin-polarized Tight Binding Linear Muffin Tin Orbital method. The dominance of the Ni 3d and Cu 3d states down to 5 eV below the Fermi level is found. The modification of the bands’ widths and positions can be well explained by the dd repulsion model. The Ni 2p and Y 3d peaks resemble the results for pure metals.  相似文献   

4.
The (SN)x valence band structure, for polycrystalline films as well as for single crystal samples, has been studied using He I and He II resonance radiation. In angle-resolved photoemission energy distributions from single crystals, structure in the spectra is selectively enhanced offering a possibility of assigning the photoemission as originating from particular regions of the Brillouin Zone. The observed onset of photoemission 0.2 eV below the Fermi edge is discussed.  相似文献   

5.
The surface electronic structure of cleaved single crystals of the organic superconductor κ-(ET)2Cu(NCS)2 has been studied using photoemission microscopy. Two types of cleaved surfaces were observed, displaying different valence band photoemission spectra and different spectral behavior near the Fermi level, EF. In particular, spectra from one surface type display relatively broad spectral features in the valence band and finite spectral intensity at EF, while spectra from the other surface type show well-defined valence band emission features and zero photoemission intensity at EF. We propose that the spectral differences are due to a very short electron mean free path in this material, and our results are used to explain the differences between previously published photoemission spectra from this superconductor. We also report the results of an investigation of the electronic structure of defects in this material.  相似文献   

6.
The band structure of SnS2 has been investigated over a wide energy range by pseudopotential band structure calculations and synchrotron radiation photoemission spectroscopy techniques. A good correspondence has been found between energy positions of the theoretical density of states features and structure in the constant initial state (CIS) and energy distribution curves (EDC's) for the conduction and the valence bands respectively. In the energy region between — 8 eV and 15 eV from the top of the valence band we observe four valence band and six conduction band peaks.  相似文献   

7.
The pseudogap phenomenon in underdoped and optimally oxygen-doped high-temperature superconductors (HTSCs) of the Y1Ba2Cu3Ox system is explained from a unified point of view within the model of negative U centers. It is shown that the pseudogap features of conductivity are not related directly to the superconductivity but arise due to the existence of statistical interaction of negative U centers with valence-band holes. Specifically due to this interaction, the hole density in the valence band does not remain constant. It differently changes with temperature for different mutual positions of the Fermi level and the valence band top. These differences lead to different temperature dependences of conductivity for underdoped and optimally doped samples.  相似文献   

8.
The magnetic, electrical and electronic properties of the tetragonal ternary YbFe4Al8 compound have been investigated. This compound was supposed to be an antiferromagnetic superconductor due to the negative magnetization signal appearing at a low field of the field cooling mode, however, based on the measurements of the temperature dependence of magnetization and resistivity we do not confirm the presence of superconductivity in this material and we ascribe the negative magnetization to the complicated non-collinear magnetic structure. A switch to the antiferromagnetic order at about 150 K has been visible both on the M(T) and ρ(T) curves. The valence state of the Yb ions has been studied by X-ray photoemission spectroscopy. The valence band spectrum at the Fermi level exhibits the domination of the hybridized Yb(4f) and Fe(3d) states.  相似文献   

9.
Ca 2p-3d resonant photoemission spectroscopy of a Cd6Ca crystalline approximant unambiguously demonstrates that the low-lying unoccupied 3d levels of calcium are lowered below the Fermi energy by the formation of the approximant, as suggested from electronic structure calculations [Phys. Rev. Lett. 87, 206408 (2001)]]. Moreover, the Ca 3d partial density of states (DOS) obtained near the Fermi energy is in reasonable agreement with theoretical Ca 3d DOS. These results verify the unconventional picture that the origin of the pseudogap in the Cd-based quasicrystals is due to hybridization of the Ca 3d band with the Cd 5p band.  相似文献   

10.
The analysis of the valence band photoemission spectra of Ce compounds is inspected. It is found that the data and the models agree in that they give a 4f hole state at a binding energy of 2 eV and a 4f band near (within 100 meV) the Fermi energy. The implications of photoemission data for the electronic structures of heavy fermion systems is discussed.  相似文献   

11.
Single crystals of thorium dioxide ThO2, grown by the hydrothermal growth technique, have been investigated by ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES), and L3, M3, M4, and M5 X‐ray absorption near edge spectroscopy (XANES). The experimental band gap for large single crystals has been determined to be 6 eV to 7 eV, from UPS and IPES, in line with expectations. The combined UPS and IPES, place the Fermi level near the conduction band minimum, making these crystals n‐type, with extensive band tailing, suggesting an optical gap in the region of 4.8 eV for excitations from occupied to unoccupied edge states. Hybridization between the Th 6d/5f bands with O 2p is strongly implicated. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The electronic structure of Sr2Bi2O5 is calculated by the GGA approach. Both of the valence band maximum and the conduction band minimum are located at Γ-point. This means that Sr2Bi2O5 is a direct band-gap material. The wide energy-band dispersions near the valence band maximum and the conduction band minimum predict that holes and electrons generated by band gap excitation have a high mobility. The conduction band is composed of Bi 6p, Sr 4d and O 2p energy states. On the other hand, the valence band can be divided into two energy regions ranging from −9.5 to −7.9 eV (lower valence band) and from −4.13 to 0 eV (upper valence band). The former mainly consists of Bi 6s states hybridizing with O 2s and O 2p states, and the latter is mainly constructed from O 2p states strongly interacting with Bi 6s and Bi 6p states.  相似文献   

13.
We report photoemission results from which we directly determined the density of states g(E) in the gap of a-Si:H between the top of the valence band Ev and the Fermi level. At 0.4 eV above Ev, g(E) was found to be ≈1×1020 cm-3 eV-1 in the undoped film; P-doping increased g(E) in this region whereas annealing reduced it. The photoconductivity-derived optical absorption spectrum matched the shape of the photoemission spectrum, and thus supports the explanation that the photoconductivity shoulder at photon energies in the region of 1.3 eV is due to transitions from localized states above the valence band to the conduction band.  相似文献   

14.
Photoelectron spectra for CO adsorbed on the (111)-face of Pt have been measured using synchrotron radiation of energy 40 eV ω 150 eV. A dramatic increase of the molecular orbital (MO) intensity relative to the intensity of the Pt 5d valence band (VB) is observed for ω > 100 eV, to a ratio at that is a factor of three higher than at . The energy variation of the Pt 5d VB photoemission peak intensity has been derived independently in the 40–200 eV range from measurements on clean Pt. The 5d peak intensity is found to decrease steeply (by more than an order of magnitude) between 100 and 150 eV. The observed increase of the MO peak intensity relative to that of the 5d VB is attributed to this cross-section effect. The Pt VB peak nearest the Fermi energy which is mainly t2g in character, is found to decrease in intensity on adsorption of CO. In the present case synchrotron radiation in the ω > 100 eV range appears to be especially valuable for studies of adsorbates.  相似文献   

15.
The electronic structure and chemical bonding in HgGa2S4 crystals grown by vapor transport method are investigated with X-ray photoemission spectroscopy. The valence band of HgGa2S4 is found to be formed by splitted S 3p and Hg 6s states at binding energies BE=3-7 eV and the components at BE=7-11 eV generated by the hybridization of S 3s and Ga 4s states with a strong contribution from the Hg 5d states. At higher binding energies the emission lines related to the Hg 4f, Ga 3p, S 2p, S 2s, Hg 4d, Ga LMM, Ga 3p and S LMM states are analyzed in the photoemission spectrum. The measured core level binding energies are compared with those of HgS, GaS, AgGaS2 and SrGa2S4 compounds. The valence band spectrum proves to be independent on the technological conditions of crystal growth. In contrast to the valence band spectrum, the distribution of electron states in the bandgap of HgGa2S4 crystals is found to be strongly dependent upon the technological conditions of crystal growth as demonstrated by the photoluminescence analysis.  相似文献   

16.
The electronic structure of supported mass-selected Ag3 clusters is analyzed by joint femtosecond photoemission spectroscopy and ab initio theoretical investigations. A wide band gap insulating magnesia ultra-thin film on Mo(100) has been chosen as substrate in order to minimize the electronic interaction between metal clusters and support. After magnesia ultra-thin film preparation no photoemission from the molybdenum substrate is observed anymore, instead very weak two photon photoemission is detected possibly originating from surface or subsurface oxide defect states. Soft-landing deposition of 2 of atomic monolayer equivalents of Ag3 clusters results in the disappearance also of the MgO two photon photoemission signal, while a strong single photon photoemission signal is detected from states located directly below the Fermi level. The theoretical study of structural, electronic and optical properties of Ag3 at two model sites of MgO (100), the stoichiometric MgO(100) and an FS-center defect, based on the DFT method and the embedded cluster model provides insight into the interactions between the cluster and the support which are responsible for the characteristic spectroscopic features.  相似文献   

17.
Normal incidence photoemission has been used to investigate the existence of a valence band satellite as in the case of Ni. It is observed at 8.5 eV below the Fermi level and has an intensity which is only measurable when a photon energy is reached which corresponds to the threshold for excitation of an electron from the 4p levels to the Fermi level.  相似文献   

18.
Valence-band and conduction-band the electronic structure of the CrS (δ=0) and Cr5S6 (δ=0.17) has been investigated by means of photoemission and inverse-photoemission spectroscopies. The bandwidth of the valence bands of Cr5S6 (8.5 eV) is wider than that of CrS (8.1 eV), though the Cr 3d partial density of states evaluated from the Cr 3p-3d resonant photoemission spectroscopy is almost unchanged between the two compounds concerning shapes as well as binding energies. The Cr 3d (t2g) exchange splitting energies of CrS and Cr5S6 are determined to be 3.9 and 3.3 eV, respectively.  相似文献   

19.
Ultraviolet photoemission spectroscopy with hv < 12 eV has been used to study O2, CO, and H2 adsorption on the cleaved GaAs(110) face. It was found that O2 exposures above 105 L(1LM = 10?6 Torr sec) were required to produce changes in the energy distribution curves. At O2 exposures of 106 L on p-type and 108 L on n-type an oxide peak is observed in the EDC's located 4 eV below the valence band maximum. On p-type GaAs, O2 exposures cause the Fermi level at the surface to move up to a point 0.5 eV above the valence band maximum, while on n-type GaAs O2 exposures do not remove the Fermi level pinning caused by empty surface states on the clean GaAs. CO was found to stick to GaAs, but to desorb over a period of hours, and not to change the surface Fermi level position. H2 did not affect the EDC's, but atomic H lowered the electron affinity and raised the surface position of the Fermi level on p-type GaAs. A correlation is found in which gases which stick to the GaAs cause an upward movement of the Fermi level at the surface on p-type GaAs, while gases which stick only temporarily do not change the surface position of the Fermi level.  相似文献   

20.
A photoemission study of the green phase Y2BaCuO5, including core level spectra of the elements, CuL 3VV Auger, and XPS and UPS valence band spectra has been performed. The crystal structure of Y2BaCuO5 contains discrete [CuO5]8– units with divalent copper. The surface status of the Y2BaCuO5 samples is discussed with respect to the problems encountered in photoemission studies of the YBaCuO superconductors. The photoemission data are analysed within a simple cluster configuration interaction model by considering in addition previously reported optical spectra. Y2BaCuO5 is a charge transfer insulator with the charge transfer energy 0.5 eV being much smaller than thed–d Coulomb interaction energyU6eV. Cluster model parameters and valence band shapes of Y2BaCuO5 are compared with those of Nd2CuO4 the structure of which contains divalent copper within an extended copper-oxygen network. More detailed cluster and impurity models for cuprates described in literature are discussed in view of the present results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号