首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
压剪载荷作用下界面裂纹尖端场的研究   总被引:2,自引:2,他引:2  
建立了弹性-幂律蠕变双材料界面裂纹准静态扩展的力学模型,求得了裂纹尖端应力、应变和位移场分离变量形式的解及其数值结果;讨论了材料性能参数对裂纹尖端场的影响;计算和分析了界面裂纹的摩擦效应,并且得出了给定条件下裂尖场的轮廓图形.  相似文献   

2.
杜善义  石志飞 《力学学报》1994,26(4):440-450
采用完全非线性弹性理论,研究了一类新的可压缩超弹性材料形成的界面裂纹问题,给出了平面应变条件下裂尖场的渐近解.揭示了界面裂纹尖端场的变形特征.  相似文献   

3.
采用完全非线性弹性理论,研究了一类新的可压缩超弹性材料形成的界面裂纹问题,给出了平面应变条件下裂尖场的渐近解.揭示了界面裂纹尖端场的变形特征.  相似文献   

4.
应用复变函数解析延展原理,并通过求解Riemann-Hilbert问题,得到了含共圆弧界面裂纹系的压电材料反平面应变问题的一般解;对单个圆弧界面裂纹的情形,给出了封闭形式的复函数解和场强度因子  相似文献   

5.
双压电体界面上的电偶极子和裂纹5   总被引:1,自引:0,他引:1  
王吉伟  匡震邦 《力学学报》2002,34(2):192-199
求得了压电体双材料界面上的孤立二维电偶极子的解析解,结果表明某点电偶极子激发的应力-电位移场与该点到电偶极子的距离的平方成反比。研究了压电体双材料界面上的电偶极子对裂纹的作用,得到了问题的闭合解。在电偶极子的作用下,界面裂纹裂尖近区应力-电位移仍具有r^-1/2 iεα的振荡奇异性,文中求得裂尖应力强度因子,当电偶极子距裂尖距离ρ很近时,裂尖应力强度因子与ρ^-3/2-iεα成比例。  相似文献   

6.
为了研究粘性效应作用下的动态扩展裂纹尖端渐近场,建立了可压缩粘弹性材料II型动态扩展裂纹的力学模型,推导了可压缩材料Ⅱ型动态扩展裂纹的本构方程.在稳态蠕变阶段,弹性变形和粘性变形同时在裂纹尖端场中占主导地位,应力和应变具有相同的奇异量级r-1/(n-1).通过渐近分析求得了裂纹尖端应力、应变和位移分离变量形式的渐近解,并采用打靶法求得了裂纹尖端应力、应变和位移的数值结果,给出了应力、应变和位移随各种参数的变化曲线.数值计算表明,弹性变形部分的可压缩性对Ⅱ型裂尖应力场影响甚微,而对应变场和位移场影响较大.裂尖场主要受材料的蠕变指数n和马赫数M的控制.当泊松比ν =0.5时,可以退化为不可压缩粘弹性材料Ⅱ型动态扩展裂纹.  相似文献   

7.
粘弹性界面裂纹奇异场   总被引:1,自引:0,他引:1  
汤丽华  许金泉 《力学季刊》2007,28(1):116-123
对于许多粘弹性问题,通常可以利用对应性原理,即由弹性问题的结果得到对应的粘弹性问题在拉普拉斯变换域内的解,再通过反演变换求得最终时域中的解.但是,由于界面裂纹场存在着振荡奇异性,弹性问题解的形式就已经非常复杂,对应的粘弹性问题要通过反演变换直接求得准确的解析解几乎是不可能的.本文在利用对应性原理时做了更简单的准静态处理,即将弹性结果中的材料参数用粘弹性材料参数做对应替代,得到了粘弹性界面裂纹场近似的经典解,并与有限元分析结果作了比较.同时,利用Comninou接触模型,对粘弹性界面裂纹在远场拉剪混合加载情况下的裂尖应力场和接触区做了考察,并与经典解作了比较.  相似文献   

8.
求得了压电体双材料界面上的孤立二维电偶极子的解析解,结果表明某点电偶极子激发的应力一电位移场与该点到电偶极子的距离的平方成反比.研究了压电体双材料界面上的电偶极子对裂纹的作用,得到了问题的闭合解.在电偶极子的作用下,界面裂纹裂尖近区应力-电位移仍具有r-1/2+iεα的振荡奇异性,文中求得裂尖应力强度因子,当电偶极子距裂尖距离ρ很近时,裂尖应力强度因子与ρ-3/2-iεα成比例.  相似文献   

9.
应用半权函数法求解双材料界面裂纹的应力强度因子,得到以半权函数对参考位移与应力加权积分的形式表示的应力强度因子。针对特征值为复数λ的双材料界面裂纹裂尖应力和位移场,设置与之对应特征值为-λ的位移函数,即半权函数。半权函数的应力函数满足平衡方程,应力应变关系,界面的连续条件以及在裂纹面上面力为0;半权函数与裂纹体的几何尺寸无关,对边界条件没有要求。由功的互等定理得到应力强度因子KⅠ和KⅡ的积分形式表达式。本文计算了多种情况下界面裂纹应力强度因子的算例,与文献结果符合得很好。由于裂尖应力的振荡奇异性已经在积分中避免,只需考虑绕裂尖远场的任意路径上位移和应力,即使采用该路径上较粗糙的参考解也可以得到较精确的结果。  相似文献   

10.
为了研究粘性效应作用下的动态扩展裂纹尖端渐近场,建立了蠕变材料Ⅱ型动态扩展裂纹的力学模型,在稳态蠕变阶段,弹性变形和粘性变形同时在裂纹尖端场中占主导地位,应力和应变具有相同的奇异量级,即(σ,ε)∝r-1/(n-1)。通过渐近分析求得了裂纹尖端应力、应变和位移分离变量形式的渐近解,并采用打靶法求得了裂纹尖端应力、应变的数值结果,数值计算表明,裂尖场主要受材料的蠕变指数n和马赫数M的控制。通过对裂纹尖端场的渐近分析,从应变角度出发,提出了蠕变材料Ⅱ型动态扩展裂纹的断裂判据。  相似文献   

11.
By using the extended version of Eshelby-Stroh's formulation and the method of analyt-ical continuation,the problems of interface cracks are reduced to a Hilbert problem of vector form.Ageneral explicit closed form solution for the piezothermoelastic interface crack problem is then ob-tained,the whole field solutions of temperature,heat flux,displacements,electric field,stress andelectric induction are given,the explicit expressions for the crack opening displacements and electricpotential are also provided.  相似文献   

12.
Li  X.-F. 《Meccanica》2003,38(3):309-323
The problem of an interface crack in a half-plane consisting of two bonded dissimilar piezoelectric quarters is considered under antiplane shear and inplane electric loading. The problem is solved under the electrically permeable assumption for a crack. The integral transform technique is employed to reduce the problem to triple integral equations, which is further converted to a hypersingular integral equation for the crack sliding displacement. By solving the resulting equation analytically, the electroelastic field along the interface and the energy release rate are obtained in explicit form, respectively. Several examples are given to illustrate the influence of the material properties and the crack position on the energy release rate.  相似文献   

13.
Summary  The problem of an interface edge crack between two bonded quarter-planes of dissimilar piezoelectric materials is considered under the conditions of anti-plane shear and in-plane electric loading. The crack surfaces are assumed to be impermeable to the electric field. An integral transform technique is employed to reduce the problem under consideration to dual integral equations. By solving the resulting dual integral equations, the intensity factors of the stress and the electric displacement and the energy release rate as well as the crack sliding displacement and the electric voltage across the crack surfaces are obtained in explicit form for the case of concentrated forces and free charges at the crack surfaces and at the boundary. The derived results can be taken as fundamental solutions which can be superposed to model more realistic problems. Received 10 November 2000; accepted for publication 28 March 2001  相似文献   

14.
The present paper investigates the problem of a conducting arc crack between a circular piezoelectric inclusion and an unbounded piezoelectric matrix. The original boundary value problem is reduced to a standard Riemann–Hilbert problem of vector form by means of analytical continuation. Explicit solutions for the stress singularities δ=−(1/2)±iε are obtained, closed form solutions for the field potentials are then derived through adopting a decoupling procedure. In addition, explicit expressions for the field component distributions in the whole field and along the circular interface are also obtained. Different from the interface insulating crack, stresses, strains, electric displacements and electric fields at the crack tips all exhibit oscillatory singularities. We also define a complex electro-elastic field concentration vector to characterize the singular fields near the crack tips and derive a simple expression for the energy release rate, which is always positive, in terms of the field concentration vector. The condition for the disappearance of the index ε is also discussed. When the index ε is zero, we obtain conventionally defined electro-elastic intensity factors. The examples demonstrate the physical behavior and the correctness of the obtained solution.  相似文献   

15.
This paper presents an exact solution for the problem of an elliptic hole or a crack in a thermopiezoelectric solid. First, based on the extended version of Eshelby–Stroh's formulation, the generalized 2D problems of an elliptical hole in a thermopiezoelectric medium subject to uniform heat flow and mechanical–electrical loads at infinity are studied according to exact boundary conditions at the rim of the hole. The complex potentials in the medium and the electric field inside the hole are obtained in closed form, respectively. Then, when the hole degenerates into a crack, the explicit solutions for the field intensity factors near the crack tip and the electric field inside the crack are presented. It is shown that the singularities of all the field are dependent on the material constants, the applied heat load and mechanical loads at infinity, but not on the applied electric loads. It is also found that the electric field inside the crack is linearly variable, which is different from the result based on the impermeable crack model.  相似文献   

16.
三相压电复合本构模型中的弧形界面裂纹   总被引:5,自引:0,他引:5  
深入研究了三相同心圆柱压电复合本构模型中的弧形绝缘界面裂纹问题。采用复势方法获得了该问题的级数形式的解答,并给出了应力、应变、电位移和电场强度等物理量在全场及界面上的分布,同时推导了裂尖处广义强度因子及裂面张开位移和裂面上电势差的表达式。具体计算表明该级数解答收敛迅速,同时显示出第三相混杂区的影响是不能忽略的。由于裂尖处应力奇异性为-1/2,则这种解答不会出现平面应变状态下界面裂纹裂尖处的振荡奇异性,从而不会产生违反物理实际的裂面相互嵌入现象,则该弹性解答也是建立了坚实的物理基础之上。  相似文献   

17.
Closed-form solution for two collinear cracks in a piezoelectric strip   总被引:2,自引:0,他引:2  
Under the permeable electric boundary condition, the problem of two collinear anti-plane shear cracks lying at the mid-plane of a piezoelectric strip is investigated. By using the Fourier transform, the associated problem is reduced to a singular integral equation. Solving the resulting equation analytically, the electro-elastic field intensity factors and energy release rates at the inner and outer crack tips can be determined in explicit form. Numerical results for PZT-5H piezoelectric ceramic are also presented graphically. The results reveal that the effect of electric field on crack growth in piezoelectric materials is dependent on applied elastic displacement.  相似文献   

18.
This paper presents an analysis of crack problems in homogeneous piezoelectrics or on the interfaces between two dissimilar piezoelectric materials based on the continuity of normal electric displacement and electric potential across the crack faces. The explicit analytic solutions are obtained for a single crack in piezoelectrics or on the interfaces of piezoelectric bimaterials. A class of boundary problems involving many cracks is also solved. For homogeneous materials it is found that the normal electric displacementD 2 induced by the crack is constant along the crack faces which depends only on the applied remote stress field. Within the crack slit, the electric fields induced by the crack are also constant and not affected by the applied electric field. For the bimaterials with realH, the normal electric displacementD 2 is constant along the crack faces and electric fieldE 2 has the singularity ahead of the crack tip and a jump across the interface. The project is supported by the National Natural Science Foundation of China(No. 19704100) and the Natural Science Foundation of Chinese Academy of Sciences(No. KJ951-1-201).  相似文献   

19.
The electroelastic analysis of two bonded dissimilar piezoelectric ceramics with a crack perpendicular to and terminating at the interface is made. By using Fourier integral transform, the associated boundary value problem is reduced to a singular integral equation with generalized Cauchy kernel, the solution of which is given in closed form. Results are presented for a permeable crack under anti-plane shear loading and in-plane electric loading. Obtained results indicate that the electroelastic field near the crack tip in the homogeneous piezoelectric ceramic is dominated by a traditional inverse square-root singularity, while the electroelastic field near the crack tip at the interface exhibits the singularity of power law rα, r being distance from the interface crack tip and α depending on the material constants of a bi-piezoceramic. In particular, electric field has no singularity at the crack tip in a homogeneous solid, whereas it is singular around the interface crack tip. Numerical results are given graphically to show the effects of the material properties on the singularity order and field intensity factors.  相似文献   

20.
A new experimental technique for accelerated fatigue crack growth tests was recently developed (Du et al., 2001). The technique, which uses piezoelectric actuators, enables application of cyclic loading at frequencies several orders higher than that by mechanical loading. However, the validity of this technique relies on the equivalence between piezoelectric and mechanical loading. In this paper, the behavior of an interfacial crack between a piezoelectric material and an elastic material under in-plane electric loading is studied. The displacement mismatch along a bonded interface due to electric potential loading on the piezoelectric material is modeled by inserting an array of uniformly distributed dislocations along the interface. By means of Fourier transformation methods, the governing equations are converted to an integral equation, which is then converted to a standard Hilbert problem. A closed form solution for stresses, electric field, and electric displacements along the bonded interface is obtained. The results agree very well with those obtained from numerical simulations. The results show that the closed form solution is accurate not only for far field distributions of stresses and electric variables, but also for the asymptotic distributions near the crack tip. The solution also suggests the likelihood of domain switching in the piezoelectric material near the crack tip, a process that may influence the interfacial fracture resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号