首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计并验证了一种用于细胞三维培养的集成微柱阵列的微流控芯片.芯片由一片聚二甲基硅氧烷(PDMS)沟道片和一片玻璃盖片组成, 在PDMS沟道片上集成了一个由两排微柱阵列围成的细胞培养室和两条用于输送培养基的侧沟道.微柱间距直接影响了芯片的使用性能, 是整个芯片设计的关键.基于数值模拟和实验验证, 本研究对微柱间距进行了优化设计.优化后的微流控芯片可以很好地实现细胞与细胞外基质模拟材料混合液的稳定注入、培养基中营养物质向培养室内的快速扩散和细胞代谢物的及时排出.在芯片上进行了神经干细胞的三维培养, 证明了芯片上构建的细胞体外微环境的稳定性.  相似文献   

2.
设计并制作了一种应用于细胞排列的介电泳微流控芯片,以实现细胞的非接触、批量排列。芯片主要包括PDMS微通道和“台阶”形ITO微电极。运用仿真软件COMSOL分析了微电极所形成的电场分布,确定了最大电场强度的位置;利用MEMS加工工艺制备了ITO微电极和PDMS微通道,PDMS微通道与带有ITO电极的载玻片经过氧等离子表面处理后,对准键合获得最终的微流控芯片。通过不同频率下的介电泳实验,实现了酵母菌细胞的介电泳运动,并确定了正、负介电泳运动的电场频率。结果表明,酵母菌细胞在溶液电导率为60μS/cm的环境下,1~10 kHz时,发生负介电泳运动;0.5~10 MHz时,发生正介电泳运动;50 kHz时,没有发生介电泳运动。并在施加8 Vp-p,5 MHz交流电压信号的条件下,实现了酵母菌细胞沿“台阶”形电极边缘直线排列。  相似文献   

3.
细胞电融合芯片内的电场分布对细胞的控制及细胞融合效率有非常重要的意义,它是该类芯片设计的主要因素。电场分布主要由芯片内微通道和微电极的结构决定。在一个新研制的融合芯片中,采用大量微电极构成的阵列来提高融合效率。由于电极数量很多,微通道和微电极的结构和形状复杂,理论计算芯片内部电场分布具有较大难度。利用ANSYS有限元分析软件,对细胞电融合芯片中的电场分布进行模拟分析,得到其强度分布及变化梯度。通过不同设计的对比分析,提出了更加适合于细胞电融合的电极阵列结构模型——矩形梳状交叉微电极阵列,为高效细胞电融合芯片的实现奠定了基础。在矩形梳状交叉微电极阵列原型芯片的实验研究中,细胞融合(植物原生质体融合)效率约为40%,超过了传统的化学融合(小于1%)、电融合(小于10%),以及最初所采用的矩形对称梳状电极(小于20%)。表明在该融合芯片上可以实现高效的细胞电融合。  相似文献   

4.
严伟  徐德顺  查赟峰  吴晓芳 《色谱》2016,34(11):1043-1047
建立了基于微流控芯片的乳腺癌微环境酸化模型和动态检测微环境酸化情况的分析方法。设计了一种多层复合式微流控芯片,将乳腺癌细胞悬液引入含有水凝胶前体的芯片培养室后,在硝酸纤维素薄膜上固化形成3D培养支架。芯片通道连续灌流模拟血流供应,并将非电化学的pH检测器引入芯片,通过图像分析得到实时的pH变化。通过观察癌细胞的存活率、增殖率、乳酸水平及pH值,分析微环境的酸化情况,同时与正常细胞进行比较。结果表明,连续灌流培养7 d,乳腺癌细胞的存活率保持在90%以上;随着培养天数的增加,芯片上癌细胞微环境的pH值逐渐降低,且灌流速度越低,pH值下降越明显,而正常细胞微环境的pH值无明显变化。基于微流控芯片的微环境酸化检测平台可实时动态检测微环境的pH值,有望成为相关肿瘤研究的有力工具。  相似文献   

5.
微流控细胞芯片LED诱导荧光检测微系统   总被引:1,自引:0,他引:1  
基于微流控细胞芯片分析技术和微机电系统(MEMS)加工技术, 设计制作了阵列式微流控细胞检测芯片, 采用自组装的顶窗型光电倍增管(PMT)和信号采集电路采集芯片微管道内流动细胞的荧光信号, 构建了一种针对低浓度细胞悬浮液的微流控细胞芯片发光二极管(LED)诱导荧光的快速检测微系统, 实现了对低浓度(≤40 Cell/mL)荧光标记的HepG2肝癌细胞悬浮液样本的定量计数和测试, 而且在血液细胞共存的条件下, 仍可以有效地对血液中少量HepG2肝癌细胞进行荧光计数和测试. 整个系统结构简单, 操作方便且检测灵敏度较高.  相似文献   

6.
阵列微流控浓度梯度网络用于细胞-化学刺激反应研究   总被引:3,自引:0,他引:3  
设计和制作了具有5组平行浓度梯度形成网络和30个细胞培养池的微流控芯片,该芯片集成了细胞接种、培养、梯度浓度化学刺激、标记和检测等功能单元。芯片为玻璃-PDMS杂合结构,微流控通道刻蚀于玻璃层。芯片细胞培养池设计了系列围堰结构以利于细胞贴壁。细胞接种、灌流培养和试剂引入通过外接微量注射泵控制完成。该芯片可以生成连续、稳定的平行浓度梯度。观察发现,围堰结构有利于细胞接种和生长,乳腺癌MCF-7细胞在芯片灌流培养条件下生长良好。利用该芯片检测了在接受As2O3和乙酰丝氨酸(NAC)梯度浓度刺激后乳腺癌MCF-7细胞内谷胱甘肽(GSH)水平以及细胞阿霉素敏感性的变化,分析乳腺癌细胞阿霉素敏感性与细胞内GSH水平的关系。MCF-7细胞内GSH水平的变化与刺激药物浓度呈剂量-效应依赖关系,在接受As2O3刺激后GSH水平有所下降;而在接受NAC刺激后GSH水平有所升高。MCF-7细胞阿霉素敏感性与GSH水平相关。在降低GSH水平后药物敏感性升高;而升高细胞内GSH水平后敏感性降低。这种阵列微流控浓度梯度网络可以用于高通量细胞-化学刺激反应研究,有潜力成为细胞水平大规模药物筛选的技术平台。  相似文献   

7.
微流控芯片操纵传输及实时监测单细胞量子释放   总被引:2,自引:0,他引:2  
微流控芯片技术用于细胞生化分析已引起了广泛关注.Harrison等首次在微流控芯片上对细胞群体进行操纵、传输及反应.yang等在微流控芯片上操纵细胞群体的排列,并用荧光检测细胞群体摄取钙的反应.至今还未见到微流控芯片对单个细胞进行操纵传输、定位及实时监测的报道.单细胞受激释放的监测对探索生物体神经传导具有重要意义.  相似文献   

8.
介电电泳芯片及其在细胞分析中的应用   总被引:1,自引:0,他引:1  
简要阐述了在交流和直流电压电场中,介电电泳(DEP)芯片进行细胞分离富集的机理.按照驱动电场的差异对DEP芯片进行了分类,分析和比较了DEP芯片微电极的叉指电极、抛物线电极、堡式电极、三维电极等典型结构.特别对近年来DEP芯片在单细胞分析、细胞分离与富集以及临床细胞分析中的应用进展进行了综述,并对其应用前景和发展方向进行了展望.  相似文献   

9.
单细胞分析的研究   总被引:1,自引:0,他引:1  
程介克  黄卫华  王宗礼 《色谱》2007,25(1):1-10
单细胞分析是分析化学、生物学和医学之间渗透发展形成的跨学科前沿领域。近年来,毛细管电泳及微流控芯片用于单细胞分析已取得显著进展,特别表现在微流控芯片用于细胞的培养、分选、操纵、定位、分离及检测细胞的组分,实时监测细胞释放,及高通量阵列检测等方面。芯片的单元操作可根据需要灵活组合,显示出其独特的优点。本文重点介绍作者研究组的工作,并对近三年来国内外在毛细管电泳及芯片毛细管电泳用于单细胞分析的新进展进行评论。最后从毛细管电泳与微流控芯片、微流控芯片与细胞界面以及量子点用于探测活细胞等方面,展望了单细胞分析的发展前景。  相似文献   

10.
蚀斑实验是研究病毒感染动力学最常用的方法,也是研究病毒与细胞相互作用的方法之一.但是,病毒颗粒在溶液中的随机分布导致蚀斑在细胞层上的形成位置难以确定,因此难以对蚀斑进行长时间的示踪观察.本文通过设计微流控芯片内微通道的结构和尺寸,实现了对样品的定点微注射,研究了喷嘴尺寸和流体流速对微注射的影响.将该芯片与开放的细胞培养区域结合,成功实现了牛痘病毒的定点微注射;对牛痘病毒侵染宿主细胞形成的蚀斑及蚀斑的变化进行长时间示踪,研究了牛痘病毒在宿主细胞之间的传播速率.本文中设计的微注射芯片解决了长期示踪蚀斑的难题,为病毒感染动力学研究及病毒与细胞相互作用研究提供了一个新的方法和平台.  相似文献   

11.
对“上火”的定义、分类,机理及奶粉的定义、品种进行了分析.通过对清火物质的分析,提出了清火奶粉的清火机制,并对“喝了不上火”的系列奶粉进行了生产工艺及营养学设计的探讨.  相似文献   

12.
随着人类对生命体系研究的深入,阐明细胞异质性的单细胞分析已成为生命分析的研究热点.基于流体动力学原理的惯性微流控技术在单细胞聚焦分离中表现出优越的性能.为深入探究螺旋结构对单细胞聚焦的影响,我们设计了三种不同半径变化的螺旋微流控芯片用于单细胞聚焦分离,结合电感耦合等离子体质谱(ICP-MS)构建了单细胞分析系统,研究了A549细胞对纳米Al2O3(nano-Al2O3)的摄取行为.研究表明,半径每90°变化的螺旋型芯片在通道内可生成更强的Dean涡流,更有利于单细胞聚焦.经nano-Al2O3孵育后,细胞间铝含量分布存在明显差异,在单细胞层面证明A549细胞对nano-Al2O3的摄取存在异质性.本研究设计的芯片可在较短通道及较低流量下实现单细胞有效聚焦,为单细胞分析提供了新的平台.  相似文献   

13.
微流控芯片是现代生命科学研究领域的重要分析工具.结合研究者近年来开展的研究工作和取得的相关进展,本文主要介绍了微流控细胞芯片的功能特征,同时从动物细胞、植物细胞以及微生物细胞三方面系统阐述了微流控芯片生命分析多元化的发展现状,并对其应用前景进行了展望.  相似文献   

14.
具有多维网络微通道结构的微流控芯片可在微纳尺度上集成细胞进样、培养、分选、裂解和分离检测等多种功能单元,不仅在尺寸上与精细胞匹配,还可为精细胞提供相对封闭的接近生理状态的生长微环境。研究者已利用此系统的层流、微通道特殊几何结构等特点对精子进行了多方面研究。该文对微流控芯片技术在精细胞的培养、分选、胞内成分分析和人工授精中的应用进行了综述,介绍了用于精细胞研究的多种微流控芯片系统,并讨论了精细胞分选的各种方法。  相似文献   

15.
微流控技术由于其固有的优势已发展成为细胞分析中一个强有力的工具.本文从微流控芯片上的细胞培养、细胞微环境的模拟和控制、单细胞分析、芯片器官以及微流控芯片与质谱联用技术等方面对微流控技术在细胞分析研究中的应用进展进行了介绍,并对这一技术的发展前景进行了总结和展望,希望能为相关研究的开展提供启发.  相似文献   

16.
王惠 《化学教育》2007,28(7):34-35
以“燃烧与灭火”的教学实践为例,以“创设情景,引出问题—设计实验,进行探究—解决问题,反思评价”为教学过程的主线,着力构建以学生探究性学习为核心的课堂教学模式。  相似文献   

17.
研发了一种多层复合微流控芯片,包含64细胞培养微孔阵列,该微阵列集成了细胞进样、水凝胶三维支架形成和持续灌流培养的过程.以MCF-7乳腺癌细胞为模型,连续培养中监测细胞存活率、细胞密度、增殖率和细胞内pH值,并同时进行冰冻切片后免疫组化染色.实验结果显示,乳腺癌细胞在水凝胶微球中增殖形成了类组织结构.E-cadherin及Vinculin在细胞内、细胞间隙均出现较强表达,提示水凝胶微球中细胞建立了细胞-细胞、细胞-间质连接.芯片上连续培养15天内细胞存活率保持在85%以上,细胞增殖率随时间延长而递减.细胞内pH值检测显示芯片3D培养细胞内部呈现明显的酸化,其程度随着细胞密度增大而增加.这种芯片肿瘤组织微阵列构建方法简单高效,有望发展成为肿瘤研究的有力工具.  相似文献   

18.
基于SOI基底的高通量细胞电融合芯片   总被引:5,自引:0,他引:5  
提出了一种以MEMS技术为基础, 可在低电压驱动条件下工作的创新型细胞电融合芯片. 该芯片的设计原理在于通过缩短微电极间的间距, 在低电压条件下获得足够强度的排队和融合电场强度. 原型芯片以SOI硅片为加工材料, 通过刻蚀方式在顶层低阻硅形成微电极和微通道; 在微电极上沉淀2 μm厚的铝膜以降低电阻率, 提高导电性; 通过PECVD方法形成150 nm厚SiO2保障铝膜的抗腐蚀性及芯片生物相容性; 芯片最终采用DIP法进行封装. 在该芯片上进行了低电压(传统电融合设备工作电压的1/20)驱动条件下的基于介电电泳的细胞排队实验及后期的细胞电融合实验, 结果表明, 细胞多以两两结合的方式排列, 与传统的细胞融合电仪器相比较, 降低了多细胞排队概率, 进而减少了传统电融合设备多细胞融合的概率, 为细胞高效率融合奠定了基础. 在加载的低电压短脉冲信号后, 微通道中形成了高压短脉冲电场, 在脉冲作用下, 烟草原生质体细胞在微通道中发生了融合, 融合时间(2 min)远低于传统电融合方法(10~30 min), 融合率远远高于传统的PEG方法(融合率小于1%)和传统电融合方法(利用BTX ECM 2001细胞电融合系统得到, 融合率小于5%).  相似文献   

19.
微流控芯片系统在单细胞研究中的应用   总被引:2,自引:0,他引:2  
高健  殷学锋  方肇伦 《化学进展》2004,16(6):975-983
微流控芯片具有网络式通道结构,扩展了在细胞和亚细胞水平进行生命科学研究的能力,为单细胞研究提供了一个新的平台.在微流控芯片通道中,人们利用气压、液压和电压,或利用介电电泳、光学陷阱、行波介电电泳以及磁场等技术,可以操纵细胞通过或驻留在通道内的任意位置,从而使单细胞计数、筛选以及胞内组分分析等操作大大简化.本文对微流控芯片系统在血液流变学、单细胞操纵与计数以及单细胞胞内组分分析中的应用进行了综述,介绍了用于单细胞研究的多种微芯片系统,讨论了芯片上进行单细胞操纵的各种方法  相似文献   

20.
阵列式对电极介电电泳芯片及其用于细胞分离富集研究   总被引:2,自引:0,他引:2  
基于介电电泳原理, 设计并制作了一种新型的能够用于细胞分离和富集的微流控介电电泳芯片. 该芯片由沉积有金电极的石英基片和带有微管道的聚二甲基硅氧烷(PDMS)盖片组成. 通过在管道底部布置间距不同的对电极阵列, 增大了正介电电泳力在管道中的有效作用范围, 能够在降低施加电压的同时, 实现对流动体系中细胞样品的捕获. 在3 V和3 MHz条件下, 该DEP芯片对人血红细胞的捕获效率达到83%; 进一步通过将肝癌细胞捕获在芯片电极上可实现对红细胞和肝癌细胞混合样品的分离, 在5 V和400 kHz条件下对肝癌细胞的捕获效率达到86%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号