首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sorption of U(VI) from aqueous solution to Na-attapulgite was investigated at different experimental chemistry conditions by using batch technique. The attapulgite sample was characterized by FTIR and XRD. Sorption of U(VI) on attapulgite was strongly dependent on pH and ionic strength. The sorption of U(VI) on attapulgite increased quickly with rising pH at pH < 6, and decreased with increasing pH at pH > 7. The presence of humic acid (HA) enhanced the sorption of U(VI) on attapulgite obviously at low pH because of the strong complexation of surface adsorbed HA with U(VI) on attapulgite surface. Sorption of U(VI) on attapulgite was mainly dominated by ion exchange and/or outer-sphere surface complexation at low pH values, whereas the sorption was attributed to the inner-sphere surface complexation or precipitation at high pH values. The sorption increased with increasing temperature and the thermodynamic parameters calculated from the temperature dependent sorption isotherms suggested that the sorption of U(VI) on attapulgite was a spontaneous and endothermic process. The results indicate that attapulgite is a very suitable material for the preconcentration of U(VI) ions from large volumes of aqueous solutions.  相似文献   

2.
In this paper, the attapulgite-iron oxide magnetic composites were synthesized by coprecipitation method and were characterized by SEM, XRD and FTIR in detail. The characterization results indicated that the iron oxide was successfully formed on the surface of attapulgite. The prepared attapulgite-iron oxide magnetic composites were applied as adsorbents to remove Eu(III) from aqueous solutions by using batch sorption experiments under different experimental conditions. The sorption properties of Eu(III) on bare attapulgite were also performed as comparison. The results indicated that the sorption of Eu(III) on attapulgite-iron oxide magnetic composites was strongly dependent on pH and temperature. The attapulgite-iron oxide magnetic composites can be separated from aqueous solutions using magnetic separation method in large scale. At low pH values, the sorption of Eu(III) was influenced by ionic strength and pH obviously, while the sorption of Eu(III) was not affected by ionic strength at high pH values. The sorption of Eu(III) was dominated by ion exchange or outer-sphere surface complexation at low pH values, and mainly by inner-sphere surface complexation at high pH values. The thermodynamic parameters (i.e., ?G °, ?S °, ?H °) calculated from the temperature dependent sorption isotherms indicated that the sorption of Eu(III) on attapulgite-iron oxide magnetic composites was an endothermic and spontaneous process. Although the sorption capacities of Eu(III) on attapulgite-iron oxide magnetic composites were a little lower than those of Eu(III) on bare attapulgite, the magnetic separation in large scale is suitable for the application of the magnetic composites in the preconcentration of Eu(III) from large volumes of aqueous solutions in possible real applications.  相似文献   

3.
The sorption of radionuclide 63Ni(II) on bentonite/iron oxide magnetic composites was investigated by batch technique under ambient conditions. The effect of contact time, solid content, pH, coexistent electrolyte ions, fulvic acid, and temperature on Ni(II) sorption to bentonite/iron oxide magnetic composites was examined. The results demonstrated that the sorption of Ni(II) was strongly dependent on pH and ionic strength at pH <8.0, and was independent of pH and ionic strength at high pH values. The sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The experimental data were well fitted by Langmuir model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Ni(II) on bentonite/iron oxide magnetic composites was an endothermic and spontaneous processes. The results show that bentonite/iron oxide magnetic composites are promising magnetic materials for the preconcentration and separation of radionickel from aqueous solutions in environmental pollution.  相似文献   

4.
The bentonite/iron oxide magnetic composites were prepared by co-precipitation method, and characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction and scanning electron microscope. The prepared bentonite/iron oxide magnetic composites were used as a sorbent for the removal of Co(II) ions from radioactive wastewater. The results demonstrated that the sorption of Co(II) was strongly dependent on pH and ionic strength at low pH values. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The presence of iron oxide in the composites also contributes to the sorption of Co(II) ions on the magnetic composites. The experimental data were well described by Langmuir model. The thermodynamic parameters (∆G °, ∆S °, ∆H °) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on bentonite/iron oxide magnetic composites was an endothermic and spontaneous processes.  相似文献   

5.
Graphene oxide nanosheets have attracted multidisciplinary attention due to their unique physicochemical properties. Herein, few-layered graphene oxide nanosheets were synthesized from graphite using a modified Hummers method and were characterized by TEM, AFM, Raman spectroscopy, XPS, FTIR spectroscopy, TG-DTA and acid-base titrations. The prepared few-layered graphene oxide nanosheets were used as adsorbents for the preconcentration of U(VI) ions from large volumes of aqueous solutions as a function of pH, ionic strength and temperature. The sorption of U(VI) ions on the graphene oxide nanosheets was strongly dependent on pH and independent of the ionic strength, indicating that the sorption was mainly dominated by inner-sphere surface complexation rather than by outer-sphere surface complexation or ion exchange. The abundant oxygen-containing functional groups on the surfaces of the graphene oxide nanosheets played an important role in U(VI) sorption. The sorption of U(VI) on graphene oxide nanosheets increased with an increase in temperature and the thermodynamic parameters calculated from the temperature-dependent sorption isotherms suggested that the sorption of U(vi) on graphene oxide nanosheets was an endothermic and spontaneous process. The maximum sorption capacities (Q(max)) of U(VI) at pH 5.0 ± 0.1 and T = 20 °C was 97.5 mg g(-1), which was much higher than any of the currently reported nanomaterials. The graphene oxide nanosheets may be suitable materials for the removal and preconcentration of U(VI) ions from large volumes of aqueous solutions, for example, U(VI) polluted wastewater, if they can be synthesized in a cost-effective manner on a large scale in the future.  相似文献   

6.
Application of NKF-6 zeolite for the removal of U(VI) from aqueous solution   总被引:1,自引:0,他引:1  
To better understand the application of NKF-6 zeolite as an adsorbent for the removal of U(VI) from radionuclides and heavy metal ions polluted water, herein, NKF-6 zeolite was employed to remove U(VI) at different experimental conditions. The influence of solid/liquid ratio, contact time, pH, ionic strength, humic substances and temperature on sorption of U(VI) to NKF-6 zeolite was investigated using batch technique under ambient conditions. The experimental results demonstrated that the sorption of U(VI) on NKF-6 zeolite was strongly dependent on pH. The sorption property of U(VI) was influenced by ionic strength at pH < 7.0, whereas was independent of ionic strength at pH > 7.0. The presence of fulvic acid or humic acid promoted the sorption of U(VI) on NKF-6 zeolite at low pH values while restrained the sorption at high pH values. The thermodynamic parameters (i.e., ΔS 0, ΔH 0, and ΔG 0) calculated from the temperature-dependent sorption isotherms demonstrated that the sorption process of U(VI) on NKF-6 zeolite was endothermic and spontaneous. At low pH values, the sorption of U(VI) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on NKF-6 zeolite surfaces, while inner-sphere surface complexation was the main sorption mechanism at high pH values. From the experimental results, one can conclude that NKF-6 zeolite can be used as a potential adsorbent for the preconcentration and solidification of U(VI) from large volumes of aqueous solutions.  相似文献   

7.
Iron oxide/multiwalled carbon nanotube magnetic composites (denoted as magnetic composites) were synthesized and characterized in detail. The magnetic composites can be separated from aqueous solution easily by using magnetic separation method. The application of magnetic composites in the removal of Eu(III) from large volumes of aqueous solutions was studied. The results indicated that the sorption of Eu(III) on the magnetic composites was strongly dependent on pH values and weakly dependent on ionic strength. The sorption of Eu(III) on the magnetic composites was mainly dominated by inner-sphere surface complexation. The linear sorption isotherms of Eu(III) suggested that Eu(III) sorption on the magnetic composites was far from saturation. The large sorption capacity and the easy magnetic separation method indicate that the magnetic composites may be a promising suitable material in nuclear waste management in future.  相似文献   

8.
The interaction of U(VI) with Na-attapulgite was studied by using batch technique at different experimental conditions. The effect of contact time, solid content, pH, ionic strength and temperature on the sorption of U(VI) onto Na-attapulgite in the presence and absence of humic acid was also investigated. The results showed that the sorption of U(VI) on Na-attapulgite achieved sorption equilibrium quickly. Sorption of U(VI) on Na-attapulgite increased quickly with increasing pH at pH < 6.5, and then decreased with pH increasing at pH > 6.5. The sorption curves were shifted to left in low NaClO4 solutions as compared those in high NaClO4 solutions. The sorption was strongly dependent on pH and ionic strength. The sorption was dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The thermodynamic parameters (i.e., ΔH 0, ΔS 0, and ΔG 0) for the sorption of U(VI) were calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption reaction was an endothermic and spontaneous process. The Na-attapulgite is a suitable material in the removal and preconcentration of U(VI) from large volumes of aqueous solutions in nuclear waste management.  相似文献   

9.
The sorption of UO2 2+ from aqueous solution on attapulgite was investigated as a function of contact time, solid content, pH, ionic strength, foreign ions, humic acid (HA), and fulvic acid (FA) under ambient conditions by using batch technique. The attapulgite sample was characterized by XRD and FTIR in detail. The results indicated that the sorption of UO2 2+ was strongly dependent on pH and ionic strength. The sorption of UO2 2+ on attapulgite increased quickly with rising pH at pH < 6.5, and decreased with increasing pH at pH > 6.5. The presence of HA or FA enhanced the sorption of UO2 2+ on attapulgite obviously at low pH because of the strong complexation of surface adsorbed HA/FA with UO2 2+ on attapulgite surface. Sorption of UO2 2+ on attapulgite was mainly dominated by ion-exchange or outer-sphere surface complexation at low pH values, but by inner-sphere surface complexation at high pH values. The results indicate that attapulgite is a very suitable adsorbent for the preconcentration and solidification of UO2 2+ from large volumes of aqueous solutions because of its negative surface charge and large surface areas.  相似文献   

10.
In this paper, the multiwalled carbon nanotubes (MWCNTs) were modified with chitosan (CS) by using low temperature plasma grafting technique (denoted as MWCNT-CS). The prepared MWCNTs and MWCNT-CS were characterized by SEM, TEM, FTIR and Raman spectroscopy in detail and the results suggested that CS molecules were successfully grafted on the surfaces of MWCNTs. The materials were applied as adsorbents in the removal of U(VI) ions from large volumes of aqueous solutions as a function of environmental conditions. The removal of U(VI) from aqueous solution to MWCNTs and MWCNT-CS increased with increasing pH values at pH < 7, and then decreased with increasing pH values at pH > 7. The sorption of U(VI) on MWCNTs and MWCNT-CS was strongly dependent on pH and independent of ionic strength. The sorption of U(VI) on MWCNTs and MWCNT-CS was dominated by inner-sphere surface complexation rather than by ion exchange or outer-sphere surface complexation. The surface grafted chitosan molecules can enhances U(VI) sorption on MWCNTs obviously, which was also evidenced from the XPS spectroscopy analysis. The results of high sorption capacity of U(VI) on MWCNT-CS suggest that the MWCNT-CS nanomaterial is a suitable candidate in the preconcentration of U(VI) ions from large volumes of aqueous solutions.  相似文献   

11.
Sorption of radionickel on attapulgite is studied as a function of contact time, ionic strength, pH and temperature. The results indicate that the sorption of Ni(II) on attapulgite is strongly ionic strength-dependent at pH <8, and independent of ionic strength at pH >8. Outer-sphere surface complexation or ion exchange contributes to Ni(II) sorption on attapulgite at pH <8, whereas the sorption of Ni(II) is mainly dominated by inner-sphere surface complexation at pH >8. The sorption of Ni(II) on attapulgite increases with increasing temperature, and the thermodynamic parameters (??H 0, ??G 0 and ??S 0) calculated from the temperature dependent sorption isotherms suggest that the sorption of Ni(II) on attapulgite is a spontaneous and endothermic process. The high sorption capacity of attapulgite suggests that attapulgite is a suitable material for the preconcentration and solidification of radionickel from large volumes of aqueous solutions.  相似文献   

12.
The surface property of attapulgite was investigated by N2-BET surface area and zeta potential analysis in this paper. Solution pH had a remarkable effect on the sorption process, indicated an inner-sphere complexation. Humic acid (HA) in the solution enhanced U(VI) sorption significantly at pH?<?5.0, while decreased U(VI) sorption obviously at pH?>?9.0. The characteristic fluorescence changes of HA indicated that a strong chemical reaction occurred between the functional groups in HA and UO22+. The sorption was a spontaneous and endothermic process with increased entropy, and the increase in temperature would benefit the sorption.  相似文献   

13.
Multiwalled carbon nanotubes (MWCNTs) have attracted multidisciplinary study because of their unique physicochemical properties. Herein, the sorption of U(VI) from aqueous solution to oxidized MWCNTs was investigated as a function of contact time, pH and ionic strength. The results indicate that U(VI) sorption on oxidized MWCNTs is strongly dependent on pH and ionic strength. The sorption of U(VI) is mainly dominated by surface complexation and cation exchange. The sorption of U(VI) on oxidized MWCNTs is quickly to achieve the sorption equilibrium. The sorption capacity calculated from sorption isotherms suggests that oxidized MWCNTs are suitable material in the preconcentration and solidification of U(VI) from large volumes of aqueous solutions.  相似文献   

14.
Batch type experiments of U(VI) sorption on a reference montmorillonite(SWy-2) were carried out over wide ranges of pH, ionic strength, and totalU(VI) concentration. The influences of these factors on the sorption behaviorof U(VI) were analyzed to gain a macroscopic understanding of the sorptionmechanism. The sorption of U(VI) on montmorillonite showed a distinct dependencyon ionic strength. When it was low (0.01 or 0.001M), almost all of the totalU(VI) was sorbed over the whole pH range studied, therefore, the dependencyon pH was not clear. But the sorption of U(VI) on montmorillonite showed asorption pH edge in the high ionic strength condition (0.1M), like those onother clay minerals, kaolinite and chlorite. A mechanistic model was establishedby considering the mineral structure of montmorillonite together with ourprevious EPR result, which successfully explained the U(VI) sorption on montmorilloniteover the whole range of experimental conditions. The model describes the U(VI)sorption on montmorillonite as simultaneous and competitive reactions of ionexchange and surface complexation, whose relative contribution to the totalsorption depends on pH and ionic strength. At low ionic strength and low pHconditions, ion exchange was the dominant mechanism for U(VI) sorption onmontmorillonite. At high ionic strength and high pH conditions, surface complexationwas the dominant  相似文献   

15.
This paper examined the application of attapulgite as an adsorbent for the removal of Pb(II) from heavy metal-contaminated water under various conditions. The sorption results indicated that the sorption of Pb(II) on attapulgite was strongly dependent on ionic strength at pH < 7.0. Outer-sphere surface complexation or ion exchange may be the main sorption mechanism of Pb(II) on attapulgite at low pH values. No drastic difference of Pb(II) sorption was observed at pH 7.0–10.0, and the sorption at pH > 10.0 was mainly dominated by inner-sphere surface complexation. The sorption of Pb(II) on attapulgite was affected by foreign ions in solution at pH < 7.0, and was not affected by foreign ions at pH > 7.0. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) were evaluated from the temperature-dependent sorption isotherms, and the results indicated that the sorption process of Pb(II) on attapulgite was spontaneous and endothermic in nature.  相似文献   

16.
Graphene oxide and Ni-Al layered double hydroxides(GO@LDH) nanocomposites were synthesized via a one-pot hydrothermal process,and characterized by X-ray diffraction(XRD),Fourier transformed infrared spectroscopy(FTIR),scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS) and Raman spectroscopy in detail.The exploration of U(VI) sorption on GO@LDH surface was performed as a function of ionic strength,solution pH,contact time,U(VI) initial concentrations and temperature.Results of Langmuir isotherms showed that the sorption capacity of GO@LDH(160 mg/g) was much higher than those of LDH(69 mg/g) and GO(92 mg/g).The formed surface complexes between surface oxygen-containing functional groups of GO@LDH and U(VI) turned out to be the interaction mechanism of U(VI) with GO@LDH.According to the thermodynamic studies results,the sorption interaction was actually a spontaneous and endothermic chemical process.The sorption isotherms were better fitted with the Langmuir model compared with other models,which suggested the interaction was mainly dominated by mono layer coverage.The GO@LDH nanocomposites provide potential applications as adsorbents in the enrichment of radionuclides from wastewater in nuclear waste management and environmental remediation.  相似文献   

17.
Cyclodextrin-modified graphene oxide nanosheets (denoted as CD/GO) were synthesized by an in-situ polymerization method and characterized by as well as Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and potentiometric acid-base titration. The characterization results indicated that CD was successfully grafted onto GO surfaces by forming a chemical bond. Mutual effects on the simultaneous removal of hexavalent uranium and humic acid by CD/GO from aqueous solution were investigated. The results indicated that U(VI) and humic acid (HA) sorption on CD/GO were greatly affected by pH and ionic strength. The presence of HA enhanced U(VI) sorption at low pH and reduced U(VI) sorption at high pH, whereas the presence of U(VI) enhanced HA sorption. The surface adsorbed HA acted as a “bridge” between U(VI) and CD/GO, and formed strong inner-sphere surface complexes with U(VI). Sorption isotherms of U(VI) or HA on CD/GO could be well fitted by the Langmuir model. This work highlights that CD/GO can be used as a promising material in the enrichment of U(VI) and HA from wastewater in U(VI) and humic substances obtained by environmental pollution cleanup.  相似文献   

18.
The sorption of Co(II) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid (FA) and temperature under ambient conditions was studied. The kinetic of Co(II) sorption on Na-attapulgite was described well by pseudo-second-order model. The sorption of Co(II) on Na-attapulgite was strongly dependent on pH and ionic strength. The sorption of Co(II) was mainly dominated by outer-sphere surface complexation and/or ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The presence of FA did not affect Co(II) sorption obviously at pH <7, and a negative effect was observed at pH >7. The Langmuir and Freundlich models were used to simulate the sorption data at different temperatures, and the results indicated that the Langmuir model simulated the data better than the Freundlich isotherm model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on Na-attapulgite was an endothermic and spontaneous process. The results suggest that the attapulgite sample is a suitable material in the preconcentration and solidification of radiocobalt from large volumes of aqueous solutions.  相似文献   

19.
Herein, the sorption properties of Eu(III) on Na-attapulgite were performed by using batch sorption experiments under different experimental conditions, such as contact time, pH, ionic strength, humic acid and temperatures. The results indicated that the sorption of Eu(III) on Na-attapulgite was strongly dependent on pH and temperature. At low pH values, the sorption of Eu(III) was influenced by ionic strength, whereas the sorption was not affected by ionic strength at high pH values. The sorption of Eu(III) was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The sorption of Eu(III) onto Na-attapulgite increased with increasing temperature. The Langmuir and Freundlich models were applied to simulate the sorption isotherms, and the results indicated that the Langmuir model simulated the sorption isotherms better than the Freundlich model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were calculated from the temperature dependent sorption isotherms at 293, 313 and 333 K, respectively, and the results indicated that the uptake of Eu(III) on Na-attapulgite was an endothermic and spontaneous process. The results of high Eu(III) sorption capacity on Na-attapulgite suggest that the attapulgite is a suitable material for the preconcentration and immobilization of Eu(III) ions from large volumes of aqueous solutions.  相似文献   

20.
U(VI) sorption on kaolinite was studied as functions of contact time, pH, U(VI) concentration, solid-to-liquid ratio (m/V) by using a batch experimental method. The effects of sulfate and phosphate on U(VI) sorption were also investigated. It was found that the sorption kinetics of U(VI) can be described by a pseudo-second-order model. Potentiometric titrations at variable ionic strengths indicated that the titration curves of kaolinite were not sensitive to ionic strength, and that the pH of the zero net proton charge (pHPZNPC) was at 6.9. The sorption of U(VI) on kaolinite increased with pH up to 6.5 and reached a plateau at pH >6.5. The presence of phosphate strongly increased U(VI) sorption especially at pH <5.5, which may be due to formation of ternary surface complexes involving phosphate. In contrast, the presence of sulfate did not cause any apparent effect on U(VI) sorption. A double layer model was used to interpret both results of potentiometric titrations and U(VI) sorption on kaolinite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号