首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
溴碘化银T-颗粒乳剂晶体的表面形貌研究   总被引:2,自引:1,他引:1  
用原子力显微镜研究了T-颗粒卤化银晶体、掺杂有浅电子陷阱掺杂剂K4[Ru(CN)6]的掺杂乳剂晶体、经硫加金化学增感后的掺杂乳剂晶体的表面形貌以及曝光后表面形貌的变化.观察结果表明,T-颗粒晶体表面存在很多突起,经曝光后这些突起高度增加,更集中.掺入浅电子陷阱掺杂剂K4[Ru(CN)6]后,T-颗粒晶体对光更敏感,曝光后表面突起高度的增加幅度大于未掺杂乳剂光照后表面高度的变化.同时硫增感剂对表面突起的分布也有很大的影响.  相似文献   

2.
用(NH4)3IrCl6(Ⅲ)和(NH4)IrCl6(Ⅳ)分别对立方体AgBr乳剂颗粒表面和内部进行敏化,用表面显影和内部显影的方法,对铱盐在乳剂颗粒中的作用进行了研究。实验表明,经铱表敏的AgBr乳剂表面感光度增加,而铱内敏的AgBr乳剂表面感光度降低,内部感光度增加;铱内敏并经灰化的乳剂在曝光后能形成直接正像。这是因为经化学灰化的铱内敏乳剂在曝光后,光生电子被乳剂颗粒内部的铱中心捕获而形成内潜影,光空穴则破坏颗粒表面的灰化中心,使其不能显影。因此,我们认为铱在乳剂颗粒内部起着电子陷阱的作用。  相似文献   

3.
本文通过控制乳剂中一系列不同的钙离子浓度(4.0~80×10-3mol Ca2+/mol AgX),研究了化学增感时间对钙离子浓度的依赖性,测定了相应的感光特性,结果表明,乳剂中的钙离子在不影响最佳感光度的前提下,可有效地抑制灰雾并延缓化学增感过程,延长化学成熟时间。 经感红染料光谱增感后,测定了染料的相对增感倍率,本征及感红光谱感光度,研究了它们对轧剂中钙离子浓度的依赖关系。以卤化银乳剂对染料的吸附,对光的吸收以及Dember效应的实验结果为佐证,说明钙离子在光谱增感的电子转移过程中,起着电子陷阱的作用,从而抑制感红感光度的增感;与此同时,钙离子又抑制染料对本征感光度的减感,这可能是由于钙离子的存在阻碍了染料正空穴对卤化银本征潜影的氧化,从而保护了部分潜影免受染料正空穴的袭击。  相似文献   

4.
本文应用双注仪制备了在核表面进行不同程度还原增感和一系列溴碘化银核壳乳剂,在不同条件下测定了核表面形成的不同还原增感中心对乳剂微晶光电子衰减动力学及发光光谱的影响。结果表明:在一定增感温度和时间条件下,当Na2SO3用量低于5.4mg/molAg时光电子衰减动力学为二级反应,而当Na2SO3用量超过27mg/molAg时,增感中心一部分作为空穴陷阱,另一部分作为电子陷阱,光电子衰减速率决定于电子的捕获和复合,光电了衰减动力学为一复杂过程。低温发光光谱随不同增感程度的改变证明:还原增感中心不是发光中心。  相似文献   

5.
本文制备了一种内部增感的核壳乳剂,其核经增感到一定程度后,表面形成堆积银原子作为空隙陷阱。该乳剂与表敏乳剂混合后,可提高感光度、反差和最大密度,本文研究了内增感乳剂制备过程影响因素,并对混合体系作用机理进行了初步探讨。  相似文献   

6.
采用纳米硫化铅作为增感剂对边长为0.8μm的溴化银立方体颗粒进行了化学增感.利用微弱信号的微波吸收相敏检测技术,在超短脉冲激光作用下,获得了立方体溴化银乳剂中自由光电子和浅束缚光电子随增感时间变化的衰减曲线.通过测量溴化银光作用过程的时间分辨谱,讨论了卤化银晶体中电子陷阱对光电子运动行为的影响,分析了电子陷阱效应同增感时间之间的关系以及两个一级衰减区间寿命值同增感时间的关系.通过未增感样品与增感样品的衰减曲线对比,得到了在此实验条件下的最佳增感时间为60 min.  相似文献   

7.
应用常规感光测定法、电镜法、介电损耗仪和微波光导仪研究了Fe3+对卤化根乳剂微晶的掺杂效应,结果表明:Fe3+使卤化银乳剂的感光度降低,灰雾降低,而反差变化不大。电镜观察和介电损耗测量表明:Fe3+在物理成熟过程中对乳剂颗粒大小和离子电导率的影响不大,而微波光导数据表明,掺杂对电子电导的影响是明显的。上述结果表明:在AgBr中,Fe3+起了深的电子陷阱作用,使光电子徙动路程缩短,影响潜影的形成效率。  相似文献   

8.
本文发现硫化锌纳米粒子对卤化银乳剂的化学增感作用 .采用水不溶性的硫化锌纳米粒子作为化学增感剂 ,与水溶性的硫代硫酸钠增感剂相比 ,可以在不增加乳剂灰雾的条件下明显提高卤化银乳剂的感光度及反差  相似文献   

9.
使用反馈式微机控制双注乳化仪,在晶体生长过程中一定时间内,加入一定量的草酸盐,制得了草酸根离子处于晶体颗粒次表面的立方体溴化银微晶乳剂.对其实验过程的考察和感光性能的测试结果表明,(1)草酸根掺杂于次表面的溴化银乳剂与未掺杂乳剂相比较,无论是原始乳剂,还是经过化学增感,或用染料进行光谱增感后的乳剂,感光度都有明显提高(Sd/S0≥1.5),有明显的增感效应;(2)无论是原始乳剂,还是经过化学增感,或光谱增感后的乳剂,草酸根掺杂立方体溴化银乳剂颗粒的灰雾水平都不高;(3)草酸根掺杂立方体溴化银颗粒与甲酸根掺杂的溴化银乳剂相比,产生的增感效应相差不大;(4)与甲酸根掺杂立方体溴化银颗粒相比,草酸根掺杂立方体溴化银颗粒的制备方法明显较前者要简单得多,颗粒形状也优于前者.  相似文献   

10.
本文发现了硫化镍纳米粒子对卤化银乳剂的化学增感作用.采用水不溶性的硫化镍纳米粒子作为化学增感剂,与水溶性的硫代硫酸钠增感剂相比,可以在乳剂灰雾增加不大的条件下明显提高乳剂的感光度和反差.  相似文献   

11.
80 年代以来,许多新型的卤化银微晶已在新开发的各种高质量感光材料中得到应用.近十年来在国内外文献中又出现新型中空卤化银微晶制备方法的报道.本文着重研究一种表面有许多小孔及凹坑的中空卤化银T颗粒的制备方法和感光性能.由于其独特的孔洞结构,使位错、缺陷增加,填隙银离子浓度增加和电子陷阱增多,潜影形成效率提高,从而达到提高乳剂感光性能的目的.  相似文献   

12.
本文应用表面显影、Dember效应、化学成熟、光谱增感等方法,对照实心立方体溴化银乳剂研究了中空卤化银微晶的结构与光物理性质及感光性能的关系。实验结果表明:(1)中空卤化银的潜影在孔洞处优先形成;(2)中空卤化银微晶中位错、缺陷较多,其填隙银离子浓度较大,电子陷阱较多;(3)中空颗粒表面反应活性高,感光度高,光谱增感效果好;(4)中空颗粒乳剂其反差较大,最大密度较高;(5)上述结果均可归因于中空卤化银微晶所特有的孔洞结构。  相似文献   

13.
本文制备了具有化学结构缺陷以及具有物理晶格缺陷的两种内敏核壳乳剂,并研究了它们的电子自旋共振波谱。随着化学增感时间的增加,ESR信号强度增强,达到一最大值后又下降。ESR信号强度随核壳比的下降而下降;随灰化程度的上升而下降。不同减感染料由于其减感机理的不同,对内部感光性能和ESR信号强度的影响也不同。上述结果可以用空穴在颗粒内部的行为来解释。  相似文献   

14.
本文综述了近年来乳剂制备中常用的新型掺杂剂,较详细地介绍了两种能提高光电子利用效率的掺杂剂,即过渡金属络合物浅电子陷阱掺杂剂和羧酸盐(酯)有机空穴陷阱掺杂剂,总结了掺杂剂的选择原则,并举例说明了掺杂剂对乳剂感光度的影响.  相似文献   

15.
本工作利用微波吸收薄膜介电谱测量技术,测量了菁染料光谱增感后的AgBr晶体乳剂在脉冲激光曝光后产生的光电子衰减时间特性,分析了不同类型的染料及其增感条件对材料光电子时间特性的影响关系.通过比较增感后的T 颗粒乳剂和立方体乳剂的光电子衰减特性,实验验证了吸附在T 颗粒(111)晶面上的染料比吸附在立方体(100)晶面上的染料更有效、更有助于形成潜影的论据.  相似文献   

16.
本文利用紫外 可见吸收光谱、光谱曝光等手段研究了5种短波长菁染料,比较了它们在氯化银乳剂上的光谱增感作用,得出3种较好的短波长增感染料,并研究它们在氯化银颗粒上的吸附行为.结果表明,这3种染料在氯化银颗粒上均有吸附,并能有效地提高氯化银乳剂在短波长区的感光度.  相似文献   

17.
三氮吲哚利嗪(TAI)是一种常用的银盐感光材料的稳定剂,许多研究表明TAI在化学增感或光谱增感乳剂中具有超增感作用[1,2],另有报道,它与光谱增感染料两者之间的添加次序对增感效果有很大的影响[1,6,7].  相似文献   

18.
我们在前文中[1]报道了轻基四氮茚化合物(以下简称TAI)对氯化银乳剂感光性能的影响,发现它不仅能提高硫增感氯化银乳剂的感光度,而且也能提高未经硫增感的氯化银乳剂的感光度,同时,还能抑制灰雾的增长.通过对其增感机理的研究表明:TAI增感作用不是发生在显影阶段,而是发生在潜影形成阶段.由于TAI的吸附成盐作用,降低了乳剂的间隙银离子浓度及影响了颗粒表面的空间电荷分布导致了增感作用的发生[2].  相似文献   

19.
本文采用硫氰酸金溶液对硫敏化的立方体溴化银乳剂分别进行潜影加强和过敏化处理,并与硫加金敏化的乳剂进行感光性能的比较。硫敏化的乳剂经过潜影加强处理,感光度有明显提高,表明金具有促进乳剂颗粒显影的作用。另一方面,硫敏化的乳剂经过潜影加强处理,感光度虽有提高,仍达不到硫加金敏化的效果,而硫敏化的乳剂经过过敏化处理能达到甚至超过硫加金敏化的效果。这暗示着金对于硫加金敏化乳剂颗粒在曝光过程中潜影的形成是有贡献的。 本文采用Dember效应测量了乳剂的离子电导率,并进行了信号衰减速率的动力学分析。结果表明,硫加金敏化的乳剂颗粒的离子电导率和一级衰减参数与硫敏化的乳剂颗粒的相比有减小的趋势。硫敏化的乳剂经过金盐溶液过敏化处理后,乳剂颗粒的离子电导率和一级衰减参数明显减小,从而验证了金盐法过敏化效应是由于增加了颗粒环境中的银离子浓度的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号