首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
付姚姚  曹礼群 《计算数学》2019,41(4):419-439
带二次修正项的Dirac方程在拓扑绝缘体、石墨烯、超导等新材料电磁光特性分析中有着十分广泛的应用.本文工作的创新点有:一是首次提出了矩阵形式带有二次修正项的Dirac方程,它是比较一般的数学框架,涵盖了上述材料体系很多重要的物理模型,具体见附录A;二是针对上述材料体系的电磁响应问题,提出了有界区域Weyl规范下具有周期间断系数矩阵形式带二次修正项Maxwell-Dirac系统的多尺度渐近方法,结合Crank-Nicolson有限差分方法和自适应棱单元方法,发展了一类多尺度算法.数值试验结果验证了多尺度渐近方法的正确性和算法的有效性.  相似文献   

2.
Different algorithms, based on Gaussian elimination, for the solution of dense linear systems of equations are discussed for a multiprocessor ring. The number of processors is assumed not to exceed the problem size. A fairly general model for data transfer is proposed, and the algorithms are analyzed with respect to their requirements of arithmetic as well as communication times.  相似文献   

3.
A new Alternating-Direction Sinc–Galerkin (ADSG) method is developed and contrasted with classical Sinc–Galerkin methods. It is derived from an iterative scheme for solving the Lyapunov equation that arises when a symmetric Sinc–Galerkin method is used to approximate the solution of elliptic partial differential equations. We include parameter choices (derived from numerical experiments) that simplify existing alternating-direction algorithms. We compare the new scheme to a standard method employing Gaussian elimination on a system produced using the Kronecker product and Kronecker sum, as well as to a more efficient algorithm employing matrix diagonalization. We note that the ADSG method easily outperforms Gaussian elimination on the Kronecker sum and, while competitive with matrix diagonalization, does not require the computation of eigenvalues and eigenvectors.  相似文献   

4.
The problem of solving linear equations with a Toeplitz matrix appears in many applications. Often is positive definite but ill-conditioned with many small eigenvalues. In this case fast and superfast algorithms may show a very poor behavior or even break down. In recent papers the transformation of a Toeplitz matrix into a Cauchy-type matrix is proposed. The resulting new linear equations can be solved in operations using standard pivoting strategies which leads to very stable fast methods also for ill-conditioned systems. The basic tool is the formulation of Gaussian elimination for matrices with low displacement rank. In this paper, we will transform a Hermitian Toeplitz matrix into a Cauchy-type matrix by applying the Fourier transform. We will prove some useful properties of and formulate a symmetric Gaussian elimination algorithm for positive definite . Using the symmetry and persymmetry of we can reduce the total costs of this algorithm compared with unsymmetric Gaussian elimination. For complex Hermitian , the complexity of the new algorithm is then nearly the same as for the Schur algorithm. Furthermore, it is possible to include some strategies for ill-conditioned positive definite matrices that are well-known in optimization. Numerical examples show that this new algorithm is fast and reliable. Received March 24, 1995 / Revised version received December 13, 1995  相似文献   

5.
In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.  相似文献   

6.
Parallel algorithms for solving tridiagonal and near-circulant systems   总被引:1,自引:0,他引:1  
Many problems in mathematics and applied science lead to the solution of linear systems having circulant coefficient matrices. This paper presents a new stable method for the exact solution of non-symmetric tridiagonal circulant linear systems of equations. The method presented in this paper is quite competitive with Gaussian elimination both in terms of arithmetic operations and storage requirements. It is also competitive with the modified double sweep method. This method can be applied to solve the near-circulant tridiagonal system. In addition, the method is modified to allow for parallel processing.  相似文献   

7.
When convergent Jacobi or Gauss-Seidel iterations can be applied to solve systems of linear equations, a natural question is how convergence rates are affected if the original system is modified by performing some Gaussian elimination. We prove that if the initial iteration matrix is nonnegative, then such elimination improves convergence. Our results extend those contained in [4].  相似文献   

8.
This paper studies the Hankel determinants generated by a discontinuous Gaussian weight with one and two jumps. It is an extension in a previous study, in which they studied the discontinuous Gaussian weight with a single jump. By using the ladder operator approach, we obtain a series of difference and differential equations to describe the Hankel determinant for the single jump case. These equations include the Chazy II equation, continuous and discrete Painlevé IV. In addition, we consider the large n behavior of the corresponding orthogonal polynomials and prove that they satisfy the biconfluent Heun equation. We also consider the jump at the edge under a double scaling, from which a Painlevé XXXIV appeared. Furthermore, we study the Gaussian weight with two jumps and show that a quantity related to the Hankel determinant satisfies a two variables' generalization of the Jimbo‐Miwa‐Okamoto σ‐form of the Painlevé IV.  相似文献   

9.
We define the class of elimination algorithms. There are algebraic algorithms for evaluating multivariate polynomials, and include as a special case Gaussian elimination for evaluating the determinant. We show how to find the linear symmetries of a polynomial, defined appropriately, and use these methods to find the linear symmetries of the permanent and determinant. We show that in contrast to the Gaussian elimination algorithm for the determinant, there is no elimination algorithm for the permanent.  相似文献   

10.
We define the class of elimination algorithms. There are algebraic algorithms for evaluating multivariate polynomials, and include as a special case Gaussian elimination for evaluating the determinant. We show how to find the linear symmetries of a polynomial, defined appropriately, and use these methods to find the linear symmetries of the permanent and determinant. We show that in contrast to the Gaussian elimination algorithm for the determinant, there is no elimination algorithm for the permanent.  相似文献   

11.
Implicit finite-difference schemes of approximate factorization and predictor-corrector schemes based on a special splitting of operators are proposed for the numerical solution of the Navier-Stokes equations governing a viscous compressible heat-conducting gas. The schemes are based on scalar tridiagonal Gaussian elimination and are unconditionally stable. The accuracy and efficiency of the algorithms are confirmed by computing two-dimensional flows of complex geometry.  相似文献   

12.
The article is devoted to the computer realization of well-known computational algorithms of linear algebra with sparse matrices. Formal programs of operations of the second kind (subschemes) over sparse matrices are derived, as well as sub-schemes realizing the normalized expansion of a matrix, the modified Danilewski method, the stepwise choice of the leading element in a process of Gaussian elimination type, the search for approximations to an eigenvalue by the method of traces, etc.Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 58, pp. 130–148, 1976.  相似文献   

13.
Summary The standard perturbation theory for linear equations states that nearly uncoupled Markov chains (NUMCs) are very sensitive to small changes in the elements. Indeed, some algorithms, such as standard Gaussian elimination, will obtain poor results for such problems. A structured perturbation theory is given that shows that NUMCs usually lead to well conditioned problems. It is shown that with appropriate stopping, criteria, iterative aggregation/disaggregation algorithms will achieve these structured error bounds. A variant of Gaussian elimination due to Grassman, Taksar and Heyman was recently shown by O'Cinneide to achieve such bounds.Supported by the National Science Foundation under grant CCR-9000526 and its renewal, grant CCR-9201692. This research was done in part, during the author's visit to the Institute for Mathematics and its Applications, 514 Vincent Hall, 206 Church St. S.E., University of Minnesota, Minneapolis, MN 55455, USA  相似文献   

14.
In this paper, a modified scaled boundary finite element method is proposed to deal with the dynamic analysis of a discontinuous layered half-space. In order to describe the geometry of discontinuous layered half-space exactly, splicing lines, rather than a point, are chosen as the scaling center. Based on the modified scaled boundary transformation of the geometry, the Galerkin's weighted residual technique is applied to obtain the corresponding scaled boundary finite element equations in displacement. Then a modified version of dimensionless frequency is defined, and the governing first-order partial differential equations in dynamic stiffness with respect to the excitation frequency are obtained. The global stiffness is obtained by adding the dynamic stiffness of the interior domain calculated by a standard finite element method, and the dynamic stiffness of far field is calculated by the proposed method. The comparison of two existing solutions for a horizontal layered half-space confirms the accuracy and efficiency of the proposed approach. Finally, the dynamic response of a discontinuous layered half-space due to vertical uniform strip loadings is investigated.  相似文献   

15.
Recent developments in high performance computer architecture have a significant effect on all fields of scientific computing. Linear algebra and especially the solution of linear systems of equations lie at the heart of many applications in scientific computing. This paper describes and analyzes three parallel versions of the dense direct methods such as the Gaussian elimination method and the LU form of Gaussian elimination that are used in linear system solving on a multicore using an OpenMP interface. More specifically, we present two naive parallel algorithms based on row block and row cyclic data distribution and we put special emphasis on presenting a third parallel algorithm based on the pipeline technique. Further, we propose an implementation of the pipelining technique in OpenMP. Experimental results on a multicore CPU show that the proposed OpenMP pipeline implementation achieves good overall performance compared to the other two naive parallel methods. Finally, in this work we propose a simple, fast and reasonably analytical model to predict the performance of the direct methods with the pipelining technique.  相似文献   

16.
Recent developments in high performance computer architecture have a significant effect on all fields of scientific computing. Linear algebra and especially the solution of linear systems of equations lie at the heart of many applications in scientific computing. This paper describes and analyzes three parallel versions of the dense direct methods such as the Gaussian elimination method and the LU form of Gaussian elimination that are used in linear system solving on a multicore using an OpenMP interface. More specifically, we present two naive parallel algorithms based on row block and row cyclic data distribution and we put special emphasis on presenting a third parallel algorithm based on the pipeline technique. Further, we propose an implementation of the pipelining technique in OpenMP. Experimental results on a multicore CPU show that the proposed OpenMP pipeline implementation achieves good overall performance compared to the other two naive parallel methods. Finally, in this work we propose a simple, fast and reasonably analytical model to predict the performance of the direct methods with the pipelining technique.  相似文献   

17.
The standard method of Gaussian elimination for the solution of linear algebraic equations is shown, with the aid of the concept of the factor or quotient space, to have a geometrical interpretation. This suggests alternative methods for the solution of equations of this type, and two new methods are described.  相似文献   

18.
A method is presented for solving a succession of complex matrix equations in which the phase of the real and imaginary components changes. The method is more efficient than the technique obtained by using complex Gaussian elimination on each of the matrix equations separately. In addition, some interesting theoretical relationships are presented for the solution of complex matrix equations in general, using only real-valued arithmetic operations.This work was performed while the author was with the Electrical Engineering Department, McGill University, Montreal, Canada. Financial support was provided by the National Research Council of Canada.  相似文献   

19.
We show that the stability of Gaussian elimination with partial pivoting relates to the well definition of the reduced triangular systems. We develop refined perturbation bounds that generalize Skeel bounds to the case of ill conditioned systems. We finally develop reliable algorithms for solving general bidiagonal systems of linear equations with applications to the fast and stable solution of tridiagonal systems.  相似文献   

20.
The model of bulk-synchronous parallel (BSP) computation is an emerging paradigm of general-purpose parallel computing. We study the BSP complexity of Gaussian elimination and related problems. First, we analyze the Gaussian elimination without pivoting, which can be applied to the LU decomposition of symmetric positive-definite or diagonally dominant real matrices. Then we analyze the Gaussian elimination with Schönhage's recursive local pivoting suitable for the LU decomposition of matrices over a finite field, and for the QR decomposition of real matrices by the Givens rotations. Both versions of Gaussian elimination can be performed with an optimal amount of local computation, but optimal communication and synchronization costs cannot be achieved simultaneously. The algorithms presented in the paper allow one to trade off communication and synchronization costs in a certain range, achieving optimal or near-optimal cost values at the extremes. Bibliography: 19 titles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号