首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interfacial tension, electrical conductivity, NMR self-diffusion and DLS experiments have been used to investigate the self-aggregation in water of ionic liquids associating an ibuprofenate anion and 1-alkyl-3-methylimidazolium [C(n)MIm](+) (n = 4, 6, 8) cations. Despite the short alkyl chain on imidazolium cations (n ≤ 8), these ionic liquids exhibit particularly low Critical Aggregation Concentrations (CAC), significantly lower than their parent 1-alkyl-3-methylimidazolium chloride salts. This behaviour is attributed to the formation of catanionic pairs between ibuprofenate and imidazolium.  相似文献   

2.
A series of ether-derivatized imidazolium halides have been prepared and characterized. Contrary to literature reports, they are all crystalline solids and have melting points well above room temperature (50-100 degrees C). Single crystals of the imidazolium salts, obtained in situ by slow cooling from their molten state to room temperature, were analyzed by X-ray crystallography, revealing various anion-cation interactions in the solid state. Exchange of the halides with [Tf(2)N]- yielded room temperature ionic liquids with viscosities that are comparable to related 1-alkyl-3-methylimidazolium ionic liquids. Density functional theory combined with IR spectroscopy has been used to analyze the role of functionalization of the imidazolium side chain on the formation of the molecular and supramolecular structure of the compounds and its possible impact on their physical properties.  相似文献   

3.
The structures and conformational properties of 1-alkyl-3-methylimidazolium halide ionic liquids have been studied with a Becke's 3 Parameter functional method. The interaction mechanisms between the cation and the anion in 1-ethyl-3-methylimidazolium (Emim+) halide and 1-butyl-3-methylimidazolium (Bmim+) halide ionic liquids were investigated using 6-31G*, 6-31++G**, and 6-311++G** basis sets. Forty structures of different ion pairs were optimized and geometrical parameters of them have been discussed in details. Halide ions (Cl- or Br-) have been gradually placed in different regions around imidazolium cation and the interaction energies between the anion and the cation have been calculated. Theoretical results indicate that there are four activity regions in the vicinity of the imidazolium cations, in these regions the imidazolium cations and the halide anions formed stable ion pairs. Imidazolium cations can form hydrogen bond interactions with one, two or three but no more than three nearest halide anions. The halide ions are situated in hydrogen bond positions rather than at random.  相似文献   

4.
A series of imidazolium salts with the nitrile functional group attached to the alkyl side chain, viz. [CnCNmim][X] (where CnCNmim is the 1-alkylnitrile-3-methylimidazolium cation and Cn= (CH2)(n), n = 1-4; X = Cl, PF(6), and BF(4)) and [C3CNdmim][X] (where CnCNdmim is the 1-alkylnitrile-2,3-dimethylimidazolium cation and C(n) = (CH2)(n), n = 3; X = Cl, PF(6), and BF(4)), have been prepared and characterized using spectroscopic methods. The majority of the nitrile-functionalized imidazolium salts can be classed as ionic liquids since they melt below 100 degrees C. Four of the imidazolium salts have been characterized in the solid state using single-crystal X-ray diffraction analysis to reveal an extensive series of hydrogen bonds between H atoms on the cation and the anion. The relationship between the solid-state structure and the melting point is discussed. Key physical properties (density, viscosity, and solubility in common solvents) of the low melting ionic liquid have been determined and are compared with those of the related 1-alkyl-3-methylimidazolium and 1-alkyl-2,3-dimethylimidazolium ionic liquids. It was envisaged that these ionic liquids could act as both solvent and ligand for catalyzed reactions, and this application is demonstrated in hydrogenation reactions, which show that retention of the catalyst in the ionic liquid during product extraction is extremely high.  相似文献   

5.
Extensive applications of ionic liquids (ILs) may result in their accumulation in the ecological environment and organisms. Although ILs are popularly called "green solvents", their toxicity, in fact, has been exhibited. Therefore the interaction of ILs with biomolecules is a cutting-edge research subject. Herein, the interactions of 1-butyl-3-methylimidazolium carboxylate ionic liquids ([C(4)mim][HCOO], [C(4)mim][CH(3)COO] and [C(4)mim][CH(3)CH(2)COO]) with glucose in water were studied for their volumetric properties, viscosity, conductivity and NMR spectra. Limiting apparent molar volumes (V(Φ, IL)(0)), viscosity B-coefficients, limiting molar conductivities (Λ(0)) and Walden products (Λ(0)η(0)) were evaluated for the ILs in glucose + water solutions. Volumetric interaction parameters were also obtained from the transfer volumes of the ionic liquids. The contributions of the solvent properties (B(1)) and the ionic liquid-solvent interactions (B(2)) to the B-coefficient were extracted, together with molar activation energies (Δμ(IL)(0≠)) of the ionic liquids for viscous flow of the aqueous glucose + IL solution. In addition, the (13)C and (1)H NMR spectra of methyl β-D-glucopyranoside and ILs in β-D-glucopyranoside + IL + D(2)O were studied. The NMR results show that no special and strong interactions were observed between glucopyranoside and the ILs. However, it was confirmed that the H2 on the imidazolium ring has more activity (acidity) than atoms H4 and H5. The macro-properties and their changes were also discussed in terms of the size, structure and solvation of the ILs and glucose.  相似文献   

6.
The relative volatilities of a variety of common ionic liquids have been determined for the first time. Equimolar mixtures of ionic liquids were vacuum-distilled in a glass sublimation apparatus at approximately 473 K. The composition of the initial distillate, determined by NMR spectroscopy, was used to establish the relative volatility of each ionic liquid in the mixture. The effect of alkyl chain length was studied by distilling mixtures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, or mixtures of N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids, with different alkyl chain lengths. For both classes of salts, the volatility is highest when the alkyl side chain is a butyl group. The effect of cation structure on volatility has been determined by distilling mixtures containing different types of cations. Generally speaking, ionic liquids based on imidazolium and pyridinium cations are more volatile than ionic liquids based on ammonium and pyrrolidinium cations, regardless of the types of counterions present. Similarly, ionic liquids based on the anions [(C2F5SO2)2N](-), [(C4F9SO2)(CF3SO2)N](-) , and [(CF3SO2)2N](-) are more volatile than ionic liquids based on [(CF3SO2)3C](-) and [CF3SO3](-), and are much more volatile than ionic liquids based on [PF6](-).  相似文献   

7.
In this communication, we demonstrate the solute–solvent and solvent–solvent interactions in the binary mixtures of two aprotic ionic liquids, namely 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, with the protic ionic liquid 1-methylimidazolium acetate. The synergistic effects as expressed by the solvatochromic parameter are noted. This observation is in contrast to the mixing of protic ionic liquids 1-methylpyrrolidium acetate and 4-methylmorpholine acetate with 1-methylimidazolium acetate, respectively. It appears that the synergistic effects in the binary mixtures of aprotic and protic ionic liquids are caused by the formation of hydrogen bonds, since cations are dominant H-bond donors while anions are dominant H-bond acceptors. Preferential solvation models are used to describe the solute–solvent interactions in the binary ionic liquid mixtures.  相似文献   

8.
The dynamics of xenon gas, loaded in a series of 1-alkyl-3-methylimidazolium based ionic liquids, probes the formation of increasingly blurred polar/apolar nanodomains as a function of the anion type and the cation chain length. Exploiting 129Xe NMR spectroscopy techniques, like Pulse Gradient Spin Echo (PGSE) and inversion recovery (IR), the diffusion motion and relaxation times are determined for 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [CnC1im][TFSI]. A correlation between the ILs nano-structure and both xenon diffusivity and relaxation times, as well as chemical shifts, is outlined. Interestingly, comparison with previous results of the same properties in the homologous imidazolium chlorides and hexafluorophospate shows an opposite trend with the alkyl chain length. Classical molecular dynamics (MD) simulations are used to calculate the xenon and cation and anion diffusion coefficients in the same systems, including imidazolium cations with longer chains (n=4, 6, 8 … 20). An almost quantitative agreement with the experiments validates the MD simulations and, at the same time, provides the necessary structural and dynamic microscopic insights on the nano-segregation and diffusion of xenon in bistriflimide, chloride and hexafluorphosphate salts allowing to observe and rationalize the shaping effect of the cation in the nanostructure.  相似文献   

9.
Radical cations and dications of three bishydrazines belonging to the Class II mixed valence compounds have been generated, either spontaneously or by oxidation with AgSbF6, in two 1-butyl-3-methylimidazolium (4+) ionic liquids having BF4(-) and PF6(-) as counterions. The optical spectra of these intermediates have allowed evaluation of Marcus' reorganization energy lambda(s), a parameter that is directly proportional to the solvent polarity. Remarkable differences in lambda(s), as large as 600 cm(-1), have been observed as a function of the counterion, with these data providing support for the observed differences between both ionic liquids (4(+)BF4(-) and 4(+)PF6(-)) in catalysis. However, in terms of polarity, the lambda(s) values rank the hydrophilic 4(+)BF4(-) as being similar to dimethyl sulfoxide and dimethylformamide, while the polarity of hydrophobic 4(+)PF6(-) is analogous to acetonitrile. Overall, our results indicate that ionic liquids are not exceptional liquids in terms of polarity.  相似文献   

10.
We have measured the terahertz (THz) complex dielectric spectra of imidazolium ionic liquids by THz time-domain spectroscopy (THz-TDS) in the frequency range from 5 (0.15 THz) to 140 cm(-1) (4.2 THz). The ionic liquids investigated are 1-ethyl-3-methylimidazolium (EMIm+)/trifluoromethanesulfonate (TfO-), EMIm+/tetrafluoroborate (BF(4)-), 1-butyl-3-methylimidazolium (BMIm+)/TfO-, and BMIm+/BF(4)-. The dielectric values of the ionic liquids in the THz region are similar to those of short-chain alcohols. The THz dielectric values are related to subpicosecond-to-picosecond dynamics. The same trend has been observed in the empirical polarity ET(30) although it is related to the static characteristics of polarity and hydrogen bonding ability. A difference between the two types of liquids is observed in the THz dielectric spectral shapes: the ionic liquids show structured lineshapes but short-chain alcohols show much less structured ones. The structured lineshapes of the ionic liquids reflect the low-frequency motions of interion and/or intramolecular vibrations. When the ionic liquids composed of the different imidazolium cations contain the same anions as counterions, their density-normalized THz dielectric spectra above 20 cm(-1) bear strong resemblance to each other in shape and magnitude. It shows clearly that the THz spectra do not originate from the intramolecular vibrations of the imodazolium cations. All of the intramolecular vibrations of the anions are located above 140 cm(-1) except the CF3-SO3 torsion of TfO-, the band of which alone cannot explain the broad THz dielectric spectra of the ionic liquids. Therefore, we conclude that the interion vibrations rather than the intramolecular vibrations dominantly contribute to the THz dielectric spectra. The results strongly indicate that even in the liquid phase the ionic liquids have local structures similar to their solid-phase structures.  相似文献   

11.
以醋酸锌和氢氧化钠为原料, 以水和含不同长度烷基链的咪唑类氯盐离子液体的混合物作为反应介质, 采用水热法合成出不同形貌的微/纳米ZnO晶体, 用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对合成的ZnO晶体进行表征. 研究了烷基链长度、 离子液体用量、 反应时间以及反应温度对形成棒状ZnO晶体形貌的影响. 实验结果表明, 所制备的棒状ZnO晶体样品均为六方晶系结构. 在棒状ZnO晶体的制备过程中, 控制反应温度, 选择不同的离子液体及其用量十分重要.  相似文献   

12.
1-Alkyl-3-methylimidazolium cation based ionic liquids efficiently catalyze N-tert-butyloxycarbonylation of amines with excellent chemoselectivity. The catalytic role of the ionic liquid is envisaged as "electrophilic activation" of di-tert-butyl dicarbonate (Boc(2)O) through bifurcated hydrogen bond formation with the C-2 hydrogen of the 1-alkyl-3-methylimidazolium cation and has been supported by a downfield shift of the imidazolium C-2 hydrogen of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][NTf(2)]) from δ 8.39 to 8.66 in the presence of Boc(2)O in the (1)H NMR and a drastic reduction of the catalytic efficiency with 1-butyl-2,3-dimethylimidazolium ionic liquids that are devoid of the C-2 hydrogen. The differential time required for reaction with aromatic and aliphatic amines has offered means for selective N-t-Boc formation during inter and intramolecular competitions. Preferential N-t-Boc formation with secondary aliphatic amine has been achieved in the presence of primary aliphatic amine. Comparison of the catalytic efficiency for N-t-Boc formation with a common substrate revealed that [bmim][NTf(2)] is superior to the reported Lewis acid catalysts.  相似文献   

13.
N-methylimidazole, a molecular solvent, but also, in cationic form, a component of 1-alkyl-3-methylimidazolium ([C(n)MIM]+) ionic liquids, showed promise as an additive in accelerating remarkably transesterification catalyzed by lipase acrylic resin from Candida antarctica (CAL-B).  相似文献   

14.
While the imidazolium ionic liquids have been studied for some time, little is known about the pyrrolidinium ionic liquids. In this work, steady-state and picosecond time-resolved fluorescence behavior of three electron donor-acceptor molecules, coumarin-153 (C153), 4-aminophthalimide (AP), and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), has been studied in a pyrrolidinium ionic liquid, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, abbreviated here as [bmpy][Tf2N]. The steady-state fluorescence data of the systems suggest that the microenvironment around these probe molecules, which is measured in terms of the solvent polarity parameter, E(T)(30), is similar to that in 1-decanol and that the polarity of this ionic liquid is comparable to that of the imidazolium ionic liquids. All three systems exhibit wavelength-dependent fluorescence decay behavior, and the time-resolved fluorescence spectra show a progressive shift of the fluorescence maximum toward the longer wavelength with time. This behavior is attributed to solvent-mediated relaxation of the fluorescent state of these systems. The dynamics of solvation, which is studied from the time-dependent shift of the fluorescence spectra, suggests that approximately 45% of the relaxation is too rapid to be measured in the present setup having a time resolution of 25 ps. The remaining observable components of the dynamics consist of a short component of 115-440 ps (with smaller amplitude) and a long component of 610-1395 ps (with higher amplitude). The average solvation time is consistent with the viscosity of this ionic liquid. The dynamics of solvation is dependent on the probe molecule, and nearly 2-fold variation of the solvation time depending on the probe molecule could be observed. No correlation of the solvation time with the probe molecule could, however, be observed.  相似文献   

15.
The self-diffusion coefficients of each of the components in mixtures containing pyridine and each of the homologous series 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imides in acetonitrile were determined using NMR diffusometry (i. e., Pulsed Gradient Spin Echo). The nature of solvation was found to change significantly with the proportion of salt in the mixtures. Increased diffusion coefficients (when corrected for viscosity) for the molecular components were observed with increasing proportion of ionic liquid and with increasing alkyl chain length on the cation. Comparison of the molecular solvents suggests increased interactions in solution of the pyridine with other components of the mixture, consistent with the proposed interactions shown previously to drive changes in reaction kinetics. Discontinuities were seen in the diffusion data for each species in solution across different ionic liquids between the hexyl and octyl derivatives, suggesting a change in the structuring in solution as the alkyl chain on the cation changes and demonstrating the importance of such when considering homologous series.  相似文献   

16.
The steady-state fluorescence spectra and molecular dynamics simulations were explored to investigate the temperature dependent organization in some imidazolium ionic liquids:1-butyl-3-methylimidazolium hexafluo-rophosphate([bmim][PF6]),1-ethyl-3-methylimidazolium ethylsulfate([emim][EtSO4]) and 1-butyl-3-methylimida-zolium tetrafluoroborate([bmim][BF4]).The pure room temperature ionic liquids(ILs) exhibit a large red shift at more than an excitation wavelength of around 340 nm,which demonstrates the hetero...  相似文献   

17.
Use of imidazolium ionic liquids as solvents for organic transformations with tetravalent cerium salts as oxidizing agents was evaluated. Good solubility was found for ammonium hexanitratocerate(IV) (ceric ammonium nitrate, CAN) and cerium(IV) triflate in 1-alkyl-3-methylimidazolium triflate ionic liquids. Oxidation of benzyl alcohol to benzaldehyde in 1-ethyl-3-methylimidazolium triflate was studied by in-situ FTIR spectroscopy and 13C NMR spectroscopy on carbon-13-labeled benzyl alcohol. Careful control of the reaction conditions is necessary because ammonium hexanitratocerate(IV) dissolved in an ionic liquid can transform benzyl alcohol not only into benzaldehyde but also into benzyl nitrate or benzoic acid. The selectivity of the reaction of cerium(IV) triflate with benzyl alcohol in dry ionic liquids depends on the degree of hydration of cerium(IV) triflate: anhydrous cerium(IV) triflate transforms benzyl alcohol into dibenzyl ether, whereas hydrated cerium(IV) triflate affords benzaldehyde as the main reaction product. Reactions of ammonium hexanitratocerate(IV) with organic substrates other than benzyl alcohol have been explored. 1,4-Hydroquinone is quantitatively transformed into 1,4-quinone. Anisole and naphthalene are nitrated. For the cerium-mediated oxidation reactions in ionic liquids, high reaction temperatures are an advantage because under these conditions smaller amounts of byproducts are formed.  相似文献   

18.
The preliminary results described here show the complete transfer of Hg(II) ions, in the absence of a chelating agent in 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids; the lag time required to gain the quantitative metal ion partition turned out to be strongly dependent both on alkyl chain length on the imidazolium ring and on the working temperature.  相似文献   

19.
According to Fukumoto's method, a new series of ionic liquids (ILs) based on alanine, [Cnmim][Ala] ( n=2,3,4,5,6), which comprise 1-alkyl-3-methylimidazolium cation ([Cnmim](+)) and alanine anions ([Ala] (-)), were prepared and characterized. In terms of standard addition method, the density and surface tension of amino acid ILs [Cnmim][Ala] (1-alkyl-3-methylimidazolium alpha-aminopropionic acid salt) were measured in the temperature range 293.15-343.15+/-0.05 K. The volume and surface properties of the ILs [Cnmim][Ala] were discussed. A new method of determining parachor of ionic compound was proposed and was applied to estimate the physicochemical properties of amino acid ionic liquids (AAILs): molecular volume, surface tension, molar enthalpy of vaporization, and thermal expansion coefficient. In comparison with Deetlefs's method of using neutral parachor contribution, the method proposed in this work makes smaller error in estimating properties of AAILs.  相似文献   

20.
Room temperature ionic liquids (RTILs) are viscous media consisting entirely of ions. Because of the complex nature of various interactions in these media, the solvent properties of the RTILs are very little understood. Since the fluorescence response of molecules comprising conjugated electron donor and acceptor groups, referred to as dipolar molecules, is one of the most frequently exploited sources of information on complex media, whose properties are largely unknown, it is possible to obtain insight into the structure and dynamics of the RTILs by studying the fluorescence behavior of dipolar solutes in these complex media. The most commonly exploited utility of a fluorescent dipolar system is in the estimation of the polarity of the media from its steady state fluorescence response. While several dipolar systems do provide estimates of the polarity of various RTILs, there can be circumstances when the steady state emission frequency of a dipolar system may not truly reflect the equilibrium solvation energy and, hence, the polarity of the medium. The fluorescence response of a dipolar system can be dependent on the excitation wavelength, an observation not commonly encountered in conventional solvents of similar polarities. On the other hand, the time-resolved fluorescence behavior of a dipolar solute in polar medium is one of the primary sources of information on the time-scale of reorganization of the solvent molecules around the photoexcited species. As the RTILs are sufficiently polar media, the time-dependent fluorescence data of the dipolar systems provide insight into the dynamics and mechanism of solvation in these media, which differ considerably from the conventional solvents. These aspects have been discussed taking into consideration the inherent absorption and fluorescence behavior of the imidazolium ionic liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号