首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mobilities of a set of common α-amino acids, four tetraalkylammonium ions, 2,4-dimethyl pyridine (2,4-lutidine), 2,6-di-tert-butyl pyridine (DTBP), and valinol were determined using electrospray ionization-ion mobility spectrometry-quadrupole mass spectrometry (ESI-IMS-QMS) while introducing 2-butanol into the buffer gas. The mobilities of the test compounds decreased by varying extents with 2-butanol concentration in the mobility spectrometer. When the concentration of 2-butanol increased from 0.0 to 6.8 mmol m(-3) (2.5×10(2) ppmv), percentage reductions in mobilities were: 13.6% (serine), 12.2% (threonine), 10.4% (methionine), 10.3% (tyrosine), 9.8% (valinol), 9.2% (phenylalanine), 7.8% (tryptophan), 5.6% (2,4-lutidine), 2.2% (DTBP), 1.0% (tetramethylammonium ion, TMA, and tetraethylammonium ion, TEA), 0.0% (tetrapropylammonium ion, TPA), and 0.3% (tetrabutylammonium ion, TBA). These variations in mobility depended on the size and steric hindrance on the charge of the ions, and were due to formation of large ion-2-butanol clusters. This selective variation in mobilities was applied to the resolution of a mixture of compounds with similar reduced mobilities such as serine and valinol, which overlapped in N(2)-only buffer gas in the IMS spectrum. The relative insensitivity of tetraalkylammonium ions and DTBP to the introduction of 2-butanol into the buffer gas was explained by steric hindrance of the four alkyl substituents in tetraalkylammonium ions and the two tert-butyl groups in DTBP, which shielded the positive charge of the ion from the attachment of 2-butanol molecules. Low buffer gas temperatures (100 °C) produced the largest reductions in mobilities by increasing ion-2-butanol interactions and formation of clusters; high temperatures (250 °C) prevented the formation of clusters, and no reduction in ion mobility was obtained with the introduction of 2-butanol into the buffer gas. Low temperatures and high concentrations of 2-butanol produced a series of ion clusters with one to three 2-butanol molecules in compounds without steric hindrance. Clusters of two and three molecules of 2-butanol were also visible. Ligand-saturation on the positive ions with 2-butanol molecules occurred at high concentrations of modifier (6.8 mmol m(-3) at 150°C); when saturated, no further reduction in mobility occurred when 2-butanol was introduced into the buffer gas.  相似文献   

2.
Simulations show that significant ion losses occur within the commercial electrospray ionization-field asymmetric waveform ion mobility spectrometer (ESI-FAIMS) interface owing to an angular desolvation gas flow and because of the impact of the FAIMS carrier gas onto the inner rf (radio frequency) electrode. The angular desolvation gas flow diverts ions away from the entrance plate orifice while the carrier gas annihilates ions onto the inner rf electrode. A novel ESI-FAIMS interface is described that optimizes FAIMS gas flows resulting in large improvements in transmission. Simulations with the bromochloroacetate anion showed an improvement of ~9-fold to give ~70% overall transmission). Comparable transmission improvements were attained experimentally for six peptides (2+) in the range of m/z 404.2 to 653.4 at a chromatographic flow rate of 300 nL/min. Selected ion chromatograms (SIC) from nano-LC-FAIMS-MS analyses showed 71% (HLVDEPQNLIK, m/z 653.4, 2+) to 95% (LVNELTEFAK, m/z 582.3, 2+) of ion signal compared with ion signal in the SIC from LC-MS analysis. IGSEVYHNLK (580.3, 2+) showed 24% more ion signal compared with LC-MS and is explained by enhanced desolvation in FAIMS. A 3–10 times lower limits of quantitation (LOQ) (<15% RSD) was achieved for chemical noise limited peaks with FAIMS. Peaks limited by ion statistics showed subtle improvement in RSD and yielded comparable LOQ to that attained with nano-LC-MS (without FAIMS). These improvements were obtained using a reduced FAIMS separation gap (from 2.5 to 1.5 mm) that results in a shorter residence time (13.2 ms?±?3.9 ms) and enables the use of a helium free transport gas (100% nitrogen). Graphical Abstract
?  相似文献   

3.
《Analytical letters》2012,45(15):2513-2520
Slotted Quartz Tube (SQT) is a simple device that provides a sensitivity enhancement of 2–5 times in Flame Atomic Absorption Spectrometry (FAAS) depending on the element. A Gas Screen-Slotted Quartz Tube (GS-SQT) was designed to further increase sensitivity. For this purpose, two slotted gas chambers were fixed on the left and right sides of a burner head and Ar gas was supplied into these chambers perpendicular to the light path to produce two thin layers of gas screen. It was observed that these Ar screens can move up the flame tails in two ends of SQT. In addition to an increase in sensitivity by the use of SQT, Ar screen resulted in a further improvement in characteristic concentrations, C0, by a factor of 1.60 for Cd, 2.01 for Co, 1.42 for Cu, 1.94 for Mn, 1.86 for Ni, 1.78 for Pb, 1.62 for Se, and 1.09 for Zn. In addition to the enhancement in sensitivity, gas screen also helps by protecting the spectrometer from the adverse effect of using slotted quartz tube. The system is very simple and low-cost; it can be produced and applied easily.  相似文献   

4.
《Analytical letters》2012,45(1-3):216-231
The present work reports the effectiveness of a 2D imprinting method based on a surface imprinting technique for the development of a selective and sensitive flow sorbent preconcentration system for Co2+ ion determination. Cobalt ions were determined by UV-vis spectrophotometry exploiting the complexation with 1-(2-piridylazo)-2-naphtol (PAN). Based on a coefficient of relative selectivity (k'), the ion-imprinted amino-functionalized silica gel sorbent (ISG), compared with modified but non-imprinted sorbent (MSG) and silica gel (SG), showed a very high selectivity. A limit of detection of 0.51 µg L?1 and precision (n = 10) as a relative standard deviation of 2.63 and 1.50% for Co2+ concentration of 10.0 and 90.0 µg L?1, respectively, were achieved. A comparison of the proposed method with other previously published methods shows advantages in terms of sample consumption, sample throughput, and limit of detection. The application of the present method was successfully performed for the direct determination of Co2+ content in urine and environmental water samples without any interference and without sample preparation, with satisfactory results.  相似文献   

5.
The catalytic reduction of 4-nitrophenol ( 4NP ) with excess NaBH4 is the benchmark model for quantifying catalytic activity of nanoparticles. Although broadly useful, the reaction can be very selective. This can lead to false positives and negatives when utilized for catalyst down-selection from a broader materials candidate pool. We report a multi-nitrophenol cocktail screening methodology incorporating 4NP and other amino-nitrophenols, utilizing Ag, Au, Pt, and Pd nanoparticles on carbon support. The reduction of the cocktail proceeds with no deleterious side reactions on the time-scale tested. The resulting kinetic rates provide an improved correlation of relative catalyst activity when compared to performance with other reducible moieties (e. g. azo bonds), or when compared to solely 4NP screening.  相似文献   

6.
Semiconductor gas sensors with nine types of gas-sensing films were prepared and their sensitivity for hydrogen and oxygen in binary and ternary gas mixtures containing nitrogen in concentrations of 0–4 and 0–8 vol %, respectively was studied. The sensor temperature was varied from 200 to 500°C. Sensors based on an In2O3+ Al2O3(30 : 70) composite with platinum contact areas exhibited the best metrological and performance characteristics. The resistance of sensors heated to an optimum temperature of 400°C was measured as a function of the test gas concentration. In principle, the concentrations of the components in nitrogen can be determined to within 5 rel % with the use of the above functions.  相似文献   

7.
Electroorganic synthesis is an environmentally friendly alternative to traditional synthetic methods; however, the application of this strategy is heavily hindered by low product selectivity. Metal–organic frameworks (MOFs) exhibit high selectivity in numerous catalytic reactions; however, poor conductivity heavily limits the application of MOFs in electroorganic synthesis. To realize the electrocatalytic application of MOFs in selective electroorganic synthesis, a practically applicable strategy by suspending ion electrocatalysts in charged MOFs is herein reported. This approach could markedly improve the product selectivity in electroorganic synthesis. In the electrocatalytic oxidative self‐coupling of benzylamine experiments, the imine product selectivity is markedly improved from 61.3 to 94.9 %, when the MOF‐based electrocatalyst is used instead of the corresponding homogeneous electrocatalyst under the identical conditions. Therefore, this work opens a new route to improve the product selectivity in electroorganic synthesis.  相似文献   

8.
9.
For achieving miniaturization and coupling with microfluidics, electrochemical devices are advantageous. In particular, coulometry is an effective tool to analyze components in solutions of very small volumes. The sensitivity and detection limit of coulometry can be improved remarkably by converting an analyte into Ag on the same Pt electrode separated in two flow channels and measuring the amount of Ag using coulometry. We demonstrate that the cathodic and anodic potentials of both parts of the Pt electrode can be shifted and reactions can be accelerated by replacing the liquid junction connecting the two flow channels by a metal wire with redox active ends. This in turn improves the sensitivity and detection limit of the device. This effect can also be observed by directly applying a voltage to the solutions in the flow channels. The achieved detection limit for hydrogen peroxide (H2O2) was 2.4 nM.  相似文献   

10.
Abstract

A computer-assisted mixture design simplex method is presented for optimization of two-factor (pH and ion concentration) simultaneous selectivity for the optimal separation in reversed-phase HPLC. The method is based on two-factor selectivity rectangle concept with a special polynomial estimated from nine preliminary runs. Then connect to general simplex method for optimization. Double criteria simulation system (DCSS) is established for the measurement of chromatographic performance by this method. The validity of the optimization strategy is proved by applying it to an actual mixture and as compared with the general simplex method about thirty eight experiments can be omitted.  相似文献   

11.
赵亚英  周立新 《结构化学》2004,23(5):560-569
在B3LYP/6-31G(d,p)水平,全优化Mg2+、Ca2+、Mn2+、Co2+、Zn2+、Cu2+、Ni2+、Cd2+ (用有效实势(ECP) 方法处理)与腺嘌呤(A) N(1)、N(7)位点配位的两类配合物气相结构,通过相互作用能和自由能分析分别得出两位点对所研究金属离子的选择性顺序;后采用Onsager模型,优化其在水溶液(=78.39)中的结构,讨论溶剂效应对上述顺序的影响;通过相对自由能分析分别得出气相和溶液中,同种金属对两位点的选择性规律。溶液中金属离子与N(7)位配位的相对优选顺序为:Co2+ > Mg2+ > Cd2+ > Ca2+ > Zn2+ > Mn2+ > Ni2+ > Cu2+。  相似文献   

12.
A number of cool materials have been designed and used in hot weather to minimize the heat coming from sunlight. Traditionally, solar reflectance and infrared emittance were measured to characterize the cooling properties of cool materials. However, these methods could represent the cooling property only indirectly. In this work, a sandwich structure device that can straightforwardly measure the cooling properties of cool materials was designed. Two cool materials, including high-density polyethylene (HDPE) and polyvinyl chloride (PVC), were selected to verify the device. For the purpose of comparison, UV-vis-NIR spectral characterization was also used to evaluate the cooling properties of the selected materials. The results, especially for the HDPE/Green 260 composite sample, which presents much lower solar reflectance but better cooling property, indicated that the cooling properties cannot be entirely represented by only the reflectance or transmittance, and the sandwich structure device was able to make up for this deficiency.  相似文献   

13.
Oligonucleotide‐templated reactions are valuable tools for nucleic acid sensing both in vitro and in vivo. They are typically carried out under conditions that make any reaction in the absence of template highly unfavorable (most commonly by using a low concentration of reactants), which has a negative impact on the detection sensitivity. Herein, we report a novel platform for fluorogenic oligonucleotide‐templated reactions between peptide nucleic acid probes embedded within permeable agarose and alginate hydrogels. We demonstrate that under conditions of restricted mobility (that is, limited diffusion), non‐specific interactions between probes are prevented, thus leading to lower background signals. When applied to nucleic acid sensing, this accounts for a significant increase in sensitivity (that is, lower limit of detection). Optical nucleic acid sensors based on fluorogenic peptide nucleic acid probes embedded in permeable, physically crosslinked, alginate beads were also engineered and proved capable of detecting DNA concentrations as low as 100 pm .  相似文献   

14.
Targeted residue screening requires the use of reference substances in order to identify potential residues. This becomes a difficult issue when using multi-residue methods capable of analyzing several hundreds of analytes. Therefore, the capability of in silico fragmentation based on a structure database (“suspect screening”) instead of physical reference substances for routine targeted residue screening was investigated. The detection of fragment ions that can be predicted or explained by in silico software was utilized to reduce the number of false positives. These “proof of principle” experiments were done with a tool that is integrated into a commercial MS vendor instrument operating software (UNIFI) as well as with a platform-independent MS tool (Mass Frontier). A total of 97 analytes belonging to different chemical families were separated by reversed phase liquid chromatography and detected in a data-independent acquisition (DIA) mode using ion mobility hyphenated with quadrupole time of flight mass spectrometry. The instrument was operated in the MSE mode with alternating low and high energy traces. The fragments observed from product ion spectra were investigated using a “chopping” bond disconnection algorithm and a rule-based algorithm. The bond disconnection algorithm clearly explained more analyte product ions and a greater percentage of the spectral abundance than the rule-based software (92 out of the 97 compounds produced ≥1 explainable fragment ions). On the other hand, tests with a complex blank matrix (bovine liver extract) indicated that the chopping algorithm reports significantly more false positive fragments than the rule based software.
Graphical Abstract
  相似文献   

15.
The development of novel selective probes with high sensitivity for the detection of Al3+ is widely considered an important research goal due to the importance of such probes in medicine, living systems and the environment. Here, we describe a new fluorescent probe, N′-(4-diethylamino-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (1), for Al3+. Probe 1 was evaluated in a solution of acetonitrile/water (1:1 v/v). Compared with previously reported probes for Al3+, probe 1 can be synthesized easily and in high yield. A Job plot confirmed that probe 1 is able to complex Al3+ in a 1:1 ratio, and the binding constant was determined to be 4.25×108m−1. Moreover, the detection limit was as low as 6.7×10−9m, suggesting that probe 1 has a high sensitivity. Common coexistent metal ions, such as K+, Co2+, Ca2+, Ba2+, Ni2+, Pb2+, Hg2+, Ce2+, Zn2+, Cd2+, Fe3+, showed little or no interference in the detection of Al3+ in solution, demonstrating the high selectivity of the probe. Finally, the ability of probe 1 to act as a fluorescent probe for Al3+ in living systems was evaluated in Gram-negative bacteria, Escherichia coli, and confocal laser scanning microscopy confirmed its utility. The results of this study suggest that 1 has appropriate properties to be developed for application as a fluorescent probe of Al3+ for use in biological studies.  相似文献   

16.
林奇  朱鑫  陈佩  符永鹏  张有明  魏太保 《化学学报》2013,71(11):1516-1520
以前设计合成的基于香豆素氨基硫脲衍生物的传感器分子L能在含水介质中单一选择性比色识别铜离子. 鉴于铜离子能与氰根离子(CN-)结合形成稳定的配合物, 在以前工作基础上, 研究了L与铜离子形成的配合物对CN-的连续识别性能. 结果表明, L与Cu2+能形成稳定的绿色配合物CuL2, 该配合物能专一选择性高灵敏度比色识别水中的 CN-. 在CuL2的DMSO/H2O (V:V=3:1) HEPES (N-2-羟乙基哌嗪-N'-2-乙磺酸)的缓冲体系(pH=7.0)中分别加入F-, Cl-, Br-, I-, AcO-, HSO4-, ClO4-, N3-, SO42-, NO3-, SCN-和CN-等阴离子的水溶液后, 只有CN-的加入使得溶液颜色由绿色变为无色, 同时在紫外光谱中, CuL2在446 nm处的最大吸收峰消失, 这一识别过程不受其它阴离子的干扰. CuL2对CN-的裸眼最低检测限为8.0×10-6 mol/L, 紫外光谱检测限为4.0×10-7 mol/L (0.4 μmol·L-1), 低于世界卫生组织规定的正常饮用水中CN-的含量标准(<1.9 μmol·L-1). 结果表明CuL2是一种良好的CN-比色识别受体, 在含水介质中对CN-具有选择性好、灵敏度高以及抗干扰强的性能. 制备了基于CuL2的CN-检测试纸, 该试纸可以方便快捷的检测水中的CN-.  相似文献   

17.
Gaseous formic acid (FA) and acetic acid (AA) were concentrated by a needle-type extraction device, and the extracted analytes were determined using a gas chromatography-barrier discharge ionization detector. An activated carbon particle showed good extraction/desorption performance for FA and AA. The limit of quantification for FA and AA was 900 and 180 ng L?1 at sample volumes of 100 mL, and 150 and 30 ng L?1 at a sample volume of 600 mL, respectively. The storage performance of the analytes in the extraction needle was quantitatively evaluated at different temperatures, and the applicability of the proposed method to determine FA and AA in air samples was demonstrated.  相似文献   

18.
Batch conditions were optimized for the sorption of aniline and toluidines from the air on polystyrene, polyethyleneglycol-2000, and polyethyleneglycol succinate using piezoelectric microweighing. It was found that the analytical signal of a quartz crystal resonator depended on the mass of the modifier on the electrode surface and on the solvent. The selectivity of modifiers with respect to the compounds studied was estimated.  相似文献   

19.
The retention of n-alcohols, xylene and naphthol isomers, and polycyclic aromatic hydrocarbons was studied by gas chromatography using stationary phases based on mesomorphic p-n-alkoxycinnamoyloxy-p"-cyanoazobenzenes. Thermodynamic interpretation of the structural selectivity of the smectic and nematic phases of mesogens was proposed.  相似文献   

20.
Summary: The aim of the study was to investigate the variation in total surface area, porosity, pore size, Knudsen and surface diffusion coefficients, gas permeability and selectivity before and after the application of sol-gel process to porous ceramic membrane in order to determine the effect of pore modification. In this study, three different sol-gel process were applied to the ceramic support separately; one was the silica sol-gel process which was applied to increase porosity, others were silica-sol dip coating and silica-sol processing methods which were applied to decrease pore size. As a result of this, total surface area, pore size and porosity of ceramic support and membranes were determined by using BET instrument. In addition to this, Knudsen and surface diffusion coefficients were also calculated. After then, ceramic support and membranes were exposed to gas permeation experiments by using the CO2 gas with different flow rates. Gas permeability and selectivity of those membranes were measured according to the data obtained. Thus, pore surface area, porosity, pore size and Knudsen diffusion coefficient of membrane treated with silica sol-gel process increased while total surface area was decreasing. Therefore, permeability of ceramic support and membrane treated with silica sol-gel process increased, and selectivity decreased with increasing the gas flow rate. Also, surface area, porosity, pore size, permeability, selectivity, Knudsen and surface diffusion coefficients of membranes treated with silica-sol dip coating and silica-sol processing methods were determined. As a result of this, porosity, pore size, Knudsen and surface diffusion coefficients decreased, total surface area increased in both methods. However, viscous flow and Knudsen flow permeability were detected as a consequence of gas permeability test and Knudsen flow was found to be a dominant transport mechanism in addition to surface diffusive flow owing to the small pore diameter in both methods. It was observed that silica-sol processing method had lower pore diameter and higher surface diffusion coefficient than silica-sol dip coating method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号