首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Poly(o‐aminophenol) (POAP) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode (CPE). Ni(II) ions were incorporated into the electrode by immersion of the polymeric modified electrode having amine groups in 0.1 M Ni(II) ion solution. Electrochemical study of this modified electrode shows a good redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic oxidations of glucose and other carbohydrates at the surface of the Ni/SDS‐POAP/CPE were studied in a 0.1 M NaOH solution. Compared to POAP/CPE, the SDS‐POAP/CPE significantly enhanced the catalytic efficiency of Ni ions for carbohydrates oxidation. Finally, using chronoamperometric method, the catalytic rate constants (k) for carbohydrates were calculated.  相似文献   

2.
《中国化学会会志》2018,65(5):603-612
In this work, the electrochemical oxidation of methanol was investigated by different electrochemical methods at a carbon paste electrode (CPE) modified with (N‐5‐methoxysalicylaldehyde, N´‐2‐hydroxyacetophenon‐1, 2 phenylenediimino nickel(II) complex (Ni(II)–MHP) and reduced graphene oxide (RGO), which is named Ni(II)‐MHP/RGO/CPE, in an alkaline solution. This modified electrode was found to be efficient for the oxidation of methanol. It was found that methanol was oxidized by the NiOOH groups generated by further electrochemical oxidation of nickel(II) hydroxide on the surface of the modified electrode. Under optimum conditions, some parameters of the analyte (MeOH), such as the electron transfer coefficient (α), the electron transfer rate constant) ks), and the diffusion coefficient of species in a 0.1 M solution (pH = 13), were determined. The designed sensor showed a linear dynamic range of 2.0–100.0 and 100.0–1000.0 μM and a detection limit of 0.68 μM for MeOH determination. The Ni(II)‐MHP/RGO/CPE sensor was used in the determination of MeOH in a real sample.  相似文献   

3.
Poly(isonicotinic acid) (PINA) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode (CPE). Ni(II) and Co(II) ions were incorporated into the electrode by immersion of the polymer-modified electrodes in Ni(II) and Co(II) ion solutions in different proportions. After the preparation of modified electrodes, their electrochemical behavior was studied by cyclic voltammetric experiments. Electrocatalytic oxidation of methanol at the surface of the modified electrodes was studied in 1?M NaOH solution. These modified electrodes exhibit high electrocatalytic activity and stability in alkaline solution, showing oxidation peaks at low potentials with high current densities. The electrooxidation of methanol was found to be more efficient on CPE/PINA(SDS)/Ni80Co20 than on CPE/PINA(SDS)/Ni and CPE/PINA(SDS)/Ni50Co50. The effects of various parameters such as scan rates and methanol concentration on the electrooxidation of methanol are also investigated.  相似文献   

4.
In this research, a modified electrode has been produced during the electropolymerization of 4-Aminobenzoic acid in the presence of sodium dodecylsulfate (SDS) and then Ni(II) ions were incorporated to the polymer by immersion of the modified electrode in a 0.1 M Ni(II) ions solution. The electrochemical behavior of Ni/poly(4-aminobenzoic acid)/sodium dodecylsulfate/carbon paste electrode (Ni/poly(4-AB)/SDS/CPE) was investigated by using cyclic voltammetry. The experimental results exhibited the stable redox behavior of the Ni(III)/Ni(II) couple immobilized at the polymeric electrode. This polymeric modified electrode has a very good activity toward the sulfite electrooxidation in a phosphate buffer solution (pH 11). By comparison of the different responses to sulfite oxidation using electrodes Ni/poly(4-AB)/SDS/CPE, poly(4-AB)/SDS/CPE and CPE, we observed that the former electrode is a more effective catalyst for the electrooxidation of sulfite. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 0.1–1 and 1–10 mM. The detection limit of the method was 0.063 mM. Finally, the method was applied to the determination of sulfite in weak liquor sample.  相似文献   

5.
In the present research, the electro oxidation of methanol was investigated by different electrochemical methods at a carbon paste electrode (CPE) modified with bis(salicylaldehyde)‐nickel(II)‐dihydrate complex (Ni(II)‐BS) and reduced graphene oxide (RGO) (which named Ni(II)‐BS/RGO/CPE) in an alkaline solution. This modified electrode showed very efficient activity for oxidation of methanol. It was found that methanol was oxidized by NiOOH groups generated by further electrochemical oxidation of nickel (II) hydroxide on the surface of the modified electrode. The rate constant and electron transfer coefficient were calculated to be 2.18 s?1 and 0.4, respectively. The anodic peak currents revealed a linear dependency with the square root of scan rate. This behaviour is the characteristic of a diffusion controlled process, so the diffusion coefficient of methanol was found to be 1.16×10?5 cm2 s?1 and the number of transferred electron was calculated to be 1. Moreover, differential pulse voltammetry (DPV) investigations showed that the peak current values were proportional to the concentration of methanol in two linear ranges. The obtained linear ranges were from 0.5 to 100.0 µM (R2=0.991) and 400.0 to 1300.0 µM (R2=0.992), and the detection limit was found to be 0.19 µM for methanol determination. Generally, the Ni(II)‐BS/RGO/CPE sensor was used for determination of methanol in an industrial ethanol solution containing 4.0 % methanol.  相似文献   

6.
Nickel ions were incorporated in NaY zeolite according to cation exchange mechanism. Then NiY zeolite was used as modifier for preparation of modified carbon paste electrode. The electrochemical behavior of NiY-modified carbon paste electrode (NiY/CPE) was studied in alkaline solution using cyclic voltammetry method. Ability of different electrodes containing NiY/CPE, Ni-NiY/CPE, Ni-NaY/CPE, and Ni/CPE for electrocatalytic oxidation of methanol was compared (three last electrodes prepared by open circuit accumulation of Ni(II) ions on the surface of NiY/CPE, NaY/CPE, and bare CPE, respectively). Results show that Ni-NiY/CPE is best catalyst for the electrochemical oxidation of methanol in alkaline solution and both process of earlier Ni ion incorporation through cation exchange in NaY zeolite and open circuit accumulation of Ni ion on the surface of electrode are essential to have good catalyst. Effect of graphite–zeolite ratio on electrocatalytic current was studied and 3:1 ratio of graphite–zeolite was selected as optimum ratio for preparing electrode. Ni-NiY/CPE has very good stability toward the methanol oxidation in concentration range of 0.005 to 0.5 M. Finally, using chronoamperometric method, the catalytic rate constant (k) for methanol was found to be 1.56 × 104 cm3 mol−1 s−1.  相似文献   

7.
《Electroanalysis》2017,29(2):423-432
In the present paper, a stable and selective non‐enzymatic sensor is reported for determination of glucose (Glc) by using a carbon paste electrode modified with multiwall carbon nanotubes and Ni(II)‐SHP complex as modifier in an alkaline solution. This modified electrode showed impressive activity for oxidation of glucose in NaOH solution. Herein, Ni(II)‐SHP acts as a suitable platform for oxidation of glucose to glucolactone on the surface of the modified electrode by decreasing the overpotential and increasing in the current of analyte. Under the optimum conditions, the rate constant and electron transfer coefficient between electrode and modifier, were calculated to be 1.04 s−1 and 0.64, respectively. The anodic peak currents indicated a linear dependency with the square root of scan rate and this behavior is the characteristic of a diffusion controlled process. So, the diffusion coefficient of glucose was found to be 3.12×10−6 cm2 s−1 due to the used number of transferred electron of 1. The obtained results revealed two linear ranges (5 to 190.0 μM (R2=0.997), 210.0 to 700.0 μM (R2=0.999)) and the detection limit of 1.3 μM for glucose was calculated by using differential pulse voltammetry (DPV) method. Also, the designed sensor was used for determination of glucose in the blood serum and urine samples. Some other advantages of Ni(II)‐SHP/CNT/CPE sensor are remarkable reproducibility, stability and selectivity which can be related to using nanomaterial of carbon nanotubes due to enhancement of electrode surface area.  相似文献   

8.
Poly(o‐anisidine) (POA) was formed by successive cyclic voltammetry in monomer solution containing sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode. Then Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 0.1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed. The capability of this modified electrode for catalytic oxidation of folic acid was demonstrated. The amount of α and surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for folic acid oxidation were calculated. The catalytic oxidation peak current of folic acid was linearly dependent on its concentration and a linear calibration curve was obtained in the range of 0.1 to 5 mM with a correlation coefficient of 0.9994. The limit of detection (3σ) was determined as 0.091 mM. This electrocatalytic oxidation was used as simple, selective and precise voltammetric method for determination of folic acid in pharmaceutical preparations.  相似文献   

9.
In the present work, nickel-zeolite modified carbon paste electrode (Ni-ZMCPE) was prepared. The electrochemical behaviour of hydrogen peroxide at the surface of modified electrode was investigated by cyclic voltammetry and chronoamperometry in 0.1 M NaOH supporting electrolyte. The electrochemical characterization of Ni-ZMCPE exhibits redox behavior of Ni(III)/Ni(II) couple in alkaline medium. It has been shown that Ni-ZMCPE improves efficiency of the modified electrode toward hydrogen peroxide electrooxidation (It wasn’t remarkable different on ZMCPE and CPE in the presence and absence of hydrogen peroxide). Moreover, the effects of various parameters such as effect of different percents of Ni-Z to graphite, effect of pH and hydrogen peroxide concentration on the electrooxidation of hydrogen peroxide as well as stability of the Ni-ZMCPE have also been investigated. Under the selected conditions, the anodic peak current was linearly dependent on the concentration of hydrogen peroxide in the range 0.03–0.1 and 0.3–6 mM with amperometric method. The detection limit (S/N = 3) was also estimated to be 1 μM.  相似文献   

10.
Poly(N,N-dimethylaniline) (PDMA) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode. The polymerization behavior of N,N-dimethylaniline in the presence of SDS is quite different from that of N,N-dimethylaniline in the absence of SDS. The effect of varying amount of SDS on the rate of polymerization of N,N-dimethylaniline was investigated. The electrochemical behavior of the SDS-PDMA carbon paste electrode has been investigated by cyclic voltammetry in 0.5 M H2SO4 and 5 mM K4[Fe(CN)6]/0.1 M KCl solutions as the supporting electrolyte and model system, respectively. The synthesized PDMA was characterized by FT-IR and scanning electron microscopy (SEM). Ni(II) ions were incorporated into the electrode by immersion of the polymeric modified electrode having amine groups in 0.1 M Ni(II) ion solution. The electro catalytic oxidations of methanol at the surface of the Ni/SDS-PDMA electrode were studied in a 0.1 M NaOH solution. Compared to bare carbon paste and PDMA-modified carbon paste electrodes; the SDS-PDMA electrode significantly enhanced the catalytic efficiency of Ni ions for methanol oxidation.  相似文献   

11.
In this study, we prepared a modified carbon paste electrode consisting of Nickel entrapped in synthesized ZSM‐5 zeolite (Ni/ZMCPE). Then Ni(II) ions were incorporated to electrode by immersion of modified electrode in 1 M Ni(II) ion solution. Cyclic voltammetry and chronoamperometry experiments were used for electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed, the excellent capability of this modified electrode for catalytic oxidation of formaldehyde was demonstrated during the anodic potential sweep in alkaline solution. The amount of transfer coefficient (α), surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for formaldehyde were evaluated. Thus, it can be a candidate as an anode for fuel cell application.  相似文献   

12.
This study investigates the electrocatalytic oxidation of glucose and some other carbohydrates on nickel/poly(o‐aminophenol) modified carbon paste electrode as an enzyme free electrode in alkaline solution. Poly(o‐aminophenol) was prepared by electropolymerization using a carbon paste electrode bulk modified with o‐aminophenol and continuous cyclic voltammetry in HClO4 solution. Then Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed, the capability of this modified electrode for catalytic oxidation of glucose and other carbohydrates was demonstrated. The amount of α and surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for each carbohydrate were calculated. Also, the electrocatalytic oxidation peak currents of all tested carbohydrates exhibit a good linear dependence on concentration and their quantification can be done easily.  相似文献   

13.
Li Zheng  Jun-feng Song 《Talanta》2009,79(2):319-128
A modified electrode Ni(II)-BA-MWCNT-PE has been fabricated by electrodepositing nickel(II)-baicalein [Ni(II)-BA] complex on the surface of multi-wall carbon nanotube paste electrode (MWCNT-PE) in alkaline solution. The Ni(II)-BA-MWCNT-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-BA-CPE. It also shows good electrocatalytic activity toward the oxidation of hydrazine. Kinetic parameters such as the electron transfer coefficient α, rate constant ks of the electrode reaction, the diffusion coefficient D of hydrazine and the catalytic rate constant kcat of the catalytic reaction are determined. Moreover, the catalytic currents present linear dependence on the concentration of hydrazine from 2.5 μM to 0.2 mM by amperometry. The detection limit and sensitivity are 0.8 μM and 69.9 μA mM−1, respectively. The modified electrode for hydrazine determination is of the property of simple preparation, good stability, fast response and high sensitivity.  相似文献   

14.
In present work, the ionic liquid, 1‐butyl‐3‐methylimidazolium bis (trifluoromethylsulfonyl) imide was incorporated in the carbon paste electrode as the binder (IL‐CPE). O‐anisidine (OA) monomer is electropolymerized in the presence of an aqueous acidic solution onto IL‐CPE (POA/IL‐CPE). The as‐prepared substrate is used as a porous matrix for dispersion of Ni(II) ions by immersing the modified electrode in a nickel(II) nitrite solution. The modified electrodes are characterized by scanning electron microscopy (SEM) and electrochemical methods. The POA/IL‐CPE was applied successfully to highly efficient (current density of 18.2 mA cm?2) electrocatalytic oxidation of formaldehyde in alkaline medium. Finally, the rate constant for chemical reaction between formaldehyde and redox sites of the electrode was calculated.  相似文献   

15.
In this study, the electrocatalytic oxidation of methanol at nickel modified ionic liquid/carbon paste electrode (Ni/IL/CPE) in alkaline medium is presented. The ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, is incorporated into the electrode as a binder. Electrochemical impedance spectroscopy is employed to evaluate the electron transfer rate of this electrode. Ni(II) ions are incorporated into the electrode by immersion of this electrode in 1.0?M nickel sulfate solution. Cyclic voltammetry and chronoamperometry techniques are used for the electrochemical study of this modified electrode in the absence and the presence of methanol. The effect of methanol concentration on the anodic peak current shows an increase in the anodic peak current up to 1.25?M. Current density of Ni/IL/CPE for methanol oxidation in alkaline media is investigated by comparison with some of the previously reported electrodes. Results show that this electrode exhibits a high efficient electrocatalytic activity toward the oxidation of methanol with the current density of 17.6?mA?cm?2. The rate constant for chemical reaction between methanol and redox sites of electrode is calculated. This new proposed electrode is simple and efficient enough, and it can be widely used as anode in direct methanol fuel cell.  相似文献   

16.
In this work, an aqueous solution of sodium dodecylsulfate (SDS) surfactant is used as an additive for electropolymerization of N,N-dimethylaniline (DMA) onto carbon paste electrode (CPE), which is investigated as a novel matrix for deposition of nickel. The electrochemical oxidation of formaldehyde is studied at the surface of this modified electrode. The electrooxidation of formaldehyde was found to be more efficient on CPE modified with Ni/Poly(N,N-Dimethylaniline) (SDS), Ni/PDMA (SDS), than deposition Ni on CPE in alkaline solution. The electrochemical behavior and electrocatalytic activity of the electrode were studied using cyclic voltammetry and chronomethods studies. Also, the transfer second-order rate constant (k = 5.5 × 103 cm3 mol?1 s?1) between formaldehyde and nickel hydroxide was calculated. Moreover, in order to optimize of electrode and variables for efficient performance of Ni/PDMA (SDS)/CPE towards formaldehyde oxidations, the effect of various parameters such as number of potential cycles for preparation of polymer, nickel and formaldehyde concentration and accumulation time have been investigated.  相似文献   

17.
In this work, a modified carbon paste electrode consisting of Nickel dispersed in poly(ortho-aminophenol) was used for electrocatalytic oxidation of methanol in alkaline solution. A carbon paste electrode bulk modified with o-aminophenol was used for polymer preparation by cyclic voltammetry method; then, Ni(II) ions were incorporated by immersion of the modified electrode in 1 M Ni(II) ion solution at open circuit. The electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)–Ni(II) couple. Electrocatalytic oxidation of methanol on the surface of modified electrode was investigated with cyclic voltammetry and chronoamperometry methods, and the dependence of the oxidation current and shape of cyclic voltammograms on methanol concentration and scan rate were discussed. Also, long-term stability of modified electrode for electrocatalytic oxidation of methanol was investigated.  相似文献   

18.
Conducting and stable poly (N-methylaniline) film was prepared by using the repeated potential cycling technique in aqueous solution containing N-methylaniline, sulfuric acid, and sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode (CPE). The transition metal ions of Co(ІІ) were incorporated to the polymer by immersion of the modified electrode in 0.1 M cobalt chloride solution for 10 min. The electrochemical characterization of this modified electrode exhibits stable redox behavior of Co(ІІ)Co(ІІІ) and formation of insoluble oxide/hydroxide cobalt species on the CPE surface. The modified electrode showed well-defined and stable redox couples in alkaline aqueous solution. The modified electrode showed excellent electrocatalytic activity for oxidation of hydrogen peroxide. The response of modified electrode toward the H2O2 oxidation was examined using cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility, and high catalytic activity toward the hydrogen peroxide oxidation. Such characteristics were explored for the specific determination of hydrogen peroxide in cosmetics product sample, giving results in excellent agreement with those obtained by standard method.  相似文献   

19.
Phosphotungstic acid (PWA) was used for accumulation of nickel ions at the carbon paste electrode for preparation of PWA-modified CPE (PWA/CPE). The PWA was evenly mixed with graphite powder and paraffin oil. Then, for preparation of Ni/PWA/CPE, Ni ions were included onto the PWA/CPE surface through immersion method at open circuit condition. The scanning electron microscopy (SEM), energy-dispersive spectroscopy and electrochemical methods were used to verify the prepared electrodes. The SEM images reveal that morphology of the CPE was influenced by PWA addition. Application of the Ni/PWA/CPE for methanol oxidation was explored by various electrochemical techniques. Electrochemical response of methanol oxidation at the surface of Ni/PWA/CPE was 2.5 times higher than that Ni/CPE. The obtained results indicated that the modified electrode exhibited high electrocatalytic activity toward methanol oxidation. Then, catalytic rate constant was found to be 8.25 × 104 cm3 mol ?1 s?1 using chronoamperometry method. Furthermore, the effects of several parameters, such as PWA loading, NiSO4 concentration, accumulation time and methanol concentration toward methanol oxidation at the surface of this modified electrode as well as stability, have been investigated.  相似文献   

20.
We have synthesized a cobalt(II) coordination polymer and have characterized it by various methods including X-ray single crystal structural analysis. The polymer was used as modifier to fabricate a carbon paste electrode that displays electrochemical activity towards tryptophan (Trp). Trp is oxidized at the surface of the electrode in buffer solution of pH 4.2, yielding a single peak at 814 mV. The experimental conditions such as the concentration, the composition and the pH values of the supporting electrolyte, accumulation time, and the scan rate were optimized. Under the optimized conditions, the current of peak is linearly related to the concentration of Trp in the range from 0.2 to 8.0 μM, and from 8.0 to 80.0 μM. The detection limit (at S/N?=?3) is 0.1 μM at an accumulation time of 60 s. The determination of Trp in amino acid injection solutions was evaluated and the results were satisfactory. The recoveries were in the range of 97.5% to 103.0%.
Figure
As shown in Fig. 1, a well-defined and very sharp oxidation peak at 814 mV was obtained in the curve the curve b. Whereas, a relatively weak anodic peak at 835 mV can be observed under the same conditions with an bare electrode. By comparing curve b and c, it can be seen that, the peak current was about 0.720 μA with the bare CPE. However, the peak current was increased to 10.39 μA with the modified CPE. This significant improvement of peak current may be related to the effective catalytic fashion of the cobalt (II) coordination polymer film modified on the surface of the CPE in the electrochemical oxidation of Trp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号