首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, heat and mass transfer analysis for boundary layer stagnation-point flow over a stretching sheet in a porous medium saturated by a nanofluid with internal heat generation/absorption and suction/blowing is investigated. The governing partial differential equation and auxiliary conditions are converted to ordinary differential equations with the corresponding auxiliary conditions via Lie group analysis. The boundary layer temperature, concentration and nanoparticle volume fraction profiles are then determined numerically. The influences of various relevant parameters, namely, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le, suction/injection parameter S, permeability parameter k1, source/sink parameter λ and Prandtl parameter Pr on temperature and concentration as well as wall heat flux and wall mass flux are discussed. Comparison with published results is presented.  相似文献   

2.
Steady, laminar boundary fluid flow which results from the non-linear stretching of a flat surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The resulting non-linear governing equations with associated boundary conditions are solved using variational finite element method (FEM) with a local non-similar transformation. The influence of Brownian motion number (Nb), thermophoresis number (Nt), stretching parameter (n) and Lewis number (Le) on the temperature and nanoparticle concentration profiles are shown graphically. The impact of physical parameters on rate of heat transfer (−θ′(0)) and mass transfer (−?′(0)) is shown in tabulated form. Some of results have also been compared with explicit finite difference method (FDM). Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell [16] for local Nusselt number without taking the effect of Brownian motion and thermophoresis.  相似文献   

3.
Analysis has been conducted to analyze the stagnation point flow of nanofluid near a permeable stretched surface with convective boundary condition. The relevant problem formulation is presented in the presence of porous medium and internal heat generation/absorption. The effects of Brownian motion and thermophoresis occur in the transport equations. The velocity, temperature and nanoparticle concentration profiles are analyzed with respect to the involved parameters of interest namely Brownian motion parameters, thermophoresis parameter, permeability parameter, source/sink parameter, ratio of rate constants to free stream velocity and stretching velocity, Biot number and Prandtl number. A comparative study between the previous published and present results in a limiting sense is found in an excellent agreement.  相似文献   

4.
在太阳辐射下的纳米流体中,数值地研究竖向延伸壁面具有可变流条件时的层流运动.使用的纳米流体模型为,在热分层中综合考虑了Brown运动和热泳的影响.应用一个特殊形式的Lie群变换,即缩放群变换,得到相应边值问题的对称群.对平移对称群得到一个精确解,对缩放对称群得到数值解.数值解依赖于Lewis数、Brown运动参数、热分层参数和热泳参数.得到结论:上述参数明显地影响着流场、温度和纳米粒子体积率的分布.显示出纳米流体提高了基流体热传导率和对流的热交换性能,基流体中的纳米粒子还具有改善液体辐射性能的作用,直接提高了太阳能集热器的吸热效率.  相似文献   

5.
A numerical model is developed to examine the combined effects of Soret and Dufour on mixed convection magnetohydrodynamic heat and mass transfer in micropolar fluid-saturated Darcian porous medium in the presence of thermal radiation, non-uniform heat source/sink and Ohmic dissipation. The governing boundary layer equations for momentum, angular momentum (microrotation), energy and species transfer are transformed to a set of non-linear ordinary differential equations by using similarity solutions which are then solved numerically based on shooting algorithm with Runge–Kutta–Fehlberg integration scheme over the entire range of physical parameters with appropriate boundary conditions. The influence of Darcy number, Prandtl number, Schmidt number, Soret number and Dufour number, magnetic parameter, local thermal Grashof number and local solutal Grashof number on velocity, temperature and concentration fields are studied graphically. Finally, the effects of related physical parameters on local Skin-friction, local Nusselt number and local Sherwood number are also studied. Results showed that the fields were influenced appreciably by the Soret and Dufour effects, thermal radiation and magnetic field, etc.  相似文献   

6.
In the present article, radiative Sutterby nanofluid flow over a stretchable cylinder is considered. The suspended swimming microorganisms have been deliberated in the fluid analysis. Different processes such as Brownian motion, thermophoresis, Joules heating, and viscous dissipation have been inspected in the presences of stratification parameters. The solutions for flow profiles have been obtained via optimal homotopy analysis method. Impacts of different physical involved variables on non-dimensional velocity, temperature, nanofluid concentration, and concentration of density of swimming microorganisms have been debated. Coefficient of skin friction, local Nusselt number, Sherwood number, and density of motile organisms have been calculated. The results reveal that Sutterby fluid parameter enhances the skin friction and has a reverse impact on the velocity, while an increase in stratification causes a declination in the flow boundary layers. The temperature of the flow is also seen to be boosted by the increment in Brownian motion parameter. Analysis of entropy generation shows that the concentration difference parameter maximizes the entropy and minimizes the dimensionless Bejan number.  相似文献   

7.
In this investigation, thermal radiation effect over an electrically conducting, Newtonian fluid in a steady laminar magnetohydrodynamic convective flow over a porous rotating infinite disk with the consideration of heat and mass transfer in the presence of Soret and Dufour diffusion effects is investigated. The partial differential equations governing the problem under consideration are transformed by a similarity transformation into a system of ordinary differential equations which are solved numerically using fourth order Runge–Kutta based shooting method. The effects of the magnetic interaction parameter, slip flow parameter, Soret number, Dufour number, Schmidt number, radiation parameter, Prandtl number and suction parameter on the fluid velocity, temperature and concentration distributions in the regime are depicted graphically and are analyzed in detail. The corresponding skin-friction coefficients, the Nusselt number and the Sherwood number are also calculated and displayed in tables showing the effects of various parameters on them.  相似文献   

8.
Heat and mass transfer effects in the three-dimensional mixed convection flow of a viscoelastic fluid with internal heat source/sink and chemical reaction have been investigated in the present work. The flow generation is because of an exponentially stretching surface. Magnetic field normal to the direction of flow is considered. Convective conditions at the surface are also encountered. Appropriate similarity transformations are utilized to reduce the boundary layer partial differential equations into the ordinary differential equations. The homotopy analysis method is used to develop the solution expressions. Impacts of different controlling parameters such as ratio parameter, Hartman number, internal heat source/sink, chemical reaction, mixed convection, concentration buoyancy parameter and Biot numbers on the velocity, temperature and concentration profiles are analyzed. The local Nusselt and Sherwood numbers are sketched and examined.  相似文献   

9.
The effects of temperature dependent viscosity and non-uniform heat source/sink on non-Darcy MHD mixed convection boundary layer flow over a vertical stretching sheet embedded in a fluid-saturated porous media is studied in this paper. Boundary layer equations are transformed into ordinary differential equations using self-similarity transformation which are then solved numerically using fifth-order Runge-Kutta-Fehlberg method with shooting technique for various values of the governing parameters. The effects of variable viscosity, porosity, electric field parameter, non-uniform heat source/sink parameters, Soret number and Schmidt number on concentration profiles are analyzed and discussed. Favorable comparisons with previously published work on various special cases of the problem are obtained. Numerical results for variation of the local Sherwood number with buoyancy parameter, Schmidt number, and Soret number are reported graphically to show some interesting aspects of the physical parameters.  相似文献   

10.
在层流条件下,对饱和多孔介质中的竖直板,研究幂指数型非Newton流的自由对流热交换.非Newton纳米流体服从幂指数型的数学模型,模型综合考虑了Brown运动和热泳的影响.通过相似变换,将问题的偏微分控制方程组,转化为常微分方程组,得到了常微分方程组的数值解.数值解依赖于幂指数n,Lewis数Le,浮力比Nr,Brown运动参数Nb,以及热泳参数Nt.在n和Le的不同取值下,研究并讨论了对相关流体性质参数的影响和简化的Nusselt数.  相似文献   

11.
We investigate the steady two-dimensional flow of an incompressible water based nanofluid over a linearly semi-infinite stretching sheet in the presence of magnetic field numerically. The basic boundary layer equations for momentum and heat transfer are non-linear partial differential equations. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The dimensionless governing equations for this investigation are solved numerically using Nachtsheim–Swigert shooting iteration technique together with fourth order Runge–Kutta integration scheme. Effects of the nanoparticle volume fraction ϕ, magnetic parameter M, Prandtl number Pr on the velocity and the temperature profiles are presented graphically and examined for different metallic and non-metallic nanoparticles. The skin friction coefficient and the local Nusselt number are also discussed for different nanoparticles.  相似文献   

12.
就竖直平板嵌入非Darcy多孔介质中,导电流体流过平板时作不稳定的二维磁流体(MHD)双扩散对流,数值研究了Dufour和Soret效应对流动的影响.用Crank-Nicolson型的隐式有限差分法,按三对角矩阵处理,求解无量纲的非线性控制方程.详细地研究了问题中出现的各种参数对不稳定无量纲的速度、温度和浓度曲线的影响.进一步地,给出并分析了表面摩擦因数、Nus-selt数和Sherwood数随时间的变化.研究结果表明,不稳定速度、温度和浓度分布曲线,受Dufour和Soret的影响十分显著.随着Dufour数的增加或者Soret数的减小,表面摩擦因数和Sherwood数都在减小,而Nusselt数在增加.研究发现,当磁场参数增加时,边界层中的速度和温度在减小.  相似文献   

13.
An analysis is carried out to study the flow, chemical reaction and mass transfer of a steady laminar boundary layer of an electrically conducting and heat generating fluid driven by a continuously moving porous surface embedded in a non-Darcian porous medium in the presence of a transfer magnetic field. The governing partial differential equations are converted into ordinary differential equations by similarity transformation and are solved numerically by using the finite element method. The results obtained are presented graphically for velocity, temperature and concentration profiles, as well as the Sherwood number for various parameters entering into the problem.  相似文献   

14.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid over a flat sheet with a linear velocity in the presence of thermal radiation and non-uniform heat source. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed equations are solved analytically by regular perturbation method. Numerical solution of the problem is also obtained by the efficient shooting method, which agrees well with the analytical solution. The effects of various physical parameters such as viscoelastic parameter, Chandrasekhar number, Prandtl number, variable thermal conductivity parameter, Eckert number, thermal radiation parameter and non-uniform heat source/sink parameters which determine the temperature profiles are shown in several plots and the heat transfer coefficient is tabulated for a range of values of said parameters. Some important findings reported in this work reveals that combined effect of variable thermal conductivity, radiation and non-uniform heat source have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

15.
The present paper is concerned with the study of flow and heat transfer characteristics in the unsteady laminar boundary layer flow of an incompressible viscous fluid over continuously stretching permeable surface in the presence of a non-uniform heat source/sink and thermal radiation. The unsteadiness in the flow and temperature fields is because of the time-dependent stretching velocity and surface temperature. Similarity transformations are used to convert the governing time-dependent nonlinear boundary layer equations for momentum and thermal energy are reduced to a system of nonlinear ordinary differential equations containing Prandtl number, non-uniform heat source/sink parameter, thermal radiation and unsteadiness parameter with appropriate boundary conditions. These equations are solved numerically by applying shooting method using Runge–Kutta–Fehlberg method. Comparison of numerical results is made with the earlier published results under limiting cases. The effects of the unsteadiness parameter, thermal radiation, suction/injection parameter, non-uniform heat source/sink parameter on flow and heat transfer characteristics as well as on the local Nusselt number are shown graphically.  相似文献   

16.
Magneto-hydrodynamics and thermal radiation effects on heat and mass transfer in steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate embedded in a fluid saturated porous media in the presence of the thermophoresis particle deposition effect is studied in this paper. The governing equations are transformed by special transformations. Brownian motion of particles and thermophoretic transport are considered in the flow equations. The magnetic field is considered to be applied. Rosseland approximation is used to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically by the fourth-order Runge–Kutta method with shooting technique. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on the wall thermophoretic deposition velocity, concentration, temperature and velocity profiles.  相似文献   

17.
The effect of internal heat generation on free convection along a vertical plate embedded in a nanofluid saturated non-Darcy porous medium in the presence of suction/injection is analyzed. The non-linear governing equations and their associated boundary conditions are initially cast into dimensionless forms by non-dimensional variables. The resulting equations are solved numerically by an accurate, implicit, iterative finite-difference methodology and the obtained results are compared favorably with previously published work. A parametric study is performed to illustrate influence of the temperature exponent, non-Darcy, suction/injection, Brownian motion and thermophoresis parameters on the profiles of the velocity components, temperature and nanoparticle volume fraction. The numerical data for the heat and nanoparticle mass transfer rates have been tabulated for various parametric conditions.  相似文献   

18.
In this paper we examine the convective flow, heat and mass transfer of an incompressible viscous fluid past a semi-infinite inclined surface with first-order homogeneous chemical reaction by Lie group analysis. The governing partial differential equations are reduced to a system of ordinary differential equations using scaling symmetries. Numerical solutions of the resulting ordinary differential equations are obtained using the fourth-order Runge–Kutta method. From the numerical results, it is observed that the thickness of the momentum boundary layer increases with increasing the chemical reaction parameter and the Schmidt number. The thicknesses of the thermal and concentration boundary layers are decreased with increasing the chemical reaction parameter and the Schmidt number.  相似文献   

19.
In this paper we present numerical solutions to the unsteady convective boundary layer flow of a viscous fluid at a vertical stretching surface with variable transport properties and thermal radiation. Both assisting and opposing buoyant flow situations are considered. Using a similarity transformation, the governing time-dependent partial differential equations are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by a second order finite difference scheme known as the Keller-Box method. The numerical results thus obtained are analyzed for the effects of the pertinent parameters namely, the unsteady parameter, the free convection parameter, the suction/injection parameter, the Prandtl number, the thermal conductivity parameter and the thermal radiation parameter on the flow and heat transfer characteristics. It is worth mentioning that the momentum and thermal boundary layer thicknesses decrease with an increase in the unsteady parameter.  相似文献   

20.
An analysis is carried out to study free convective heat and mass transfer of an incompressible, electrically conducting fluid over a stretching sheet in the presence of suction and injection with thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects. The similarity solutions are obtained using scaling transformations. Furthermore, the similarity equations are solved numerically by using shooting technique with fourth-order Runge–Kutta integration scheme. A comparison with previously published work is performed and the results are found to be in good agreement. Numerical results of the local skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, the temperature and the concentration profiles are presented for different physical parameters. The result indicates: (i) for fluids with medium molecular weight (H2, air), Dufour and Soret effects should not be neglected; and (ii) the suction and injection parameter has significant impact in controlling the rate of heat transfer in the boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号