首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on the identification of the products that are formed upon binding of therapeutically relevant platinum complexes to proteins like β-lactoglobulin A (LGA), human serum albumin (HSA), or human hemoglobin (HB). The respective proteins were incubated with the platinum-based anticancer drugs cisplatin, carboplatin, and oxaliplatin. LGA was selected as the model protein in addition to the two most abundant blood proteins HSA and HB. In case of the model protein, the effect of free thiol groups on the affinity of cisplatin, carboplatin, and oxaliplatin was investigated by means of liquid chromatography electrospray ionization time-of-flight mass spectrometry (LC/ESI-ToF-MS). The reduced form of LGA, which contains four free thiol groups more than the native LGA, shows a much higher affinity to the platinum-based drugs. By means of liquid chromatography coupled to inductively coupled plasma mass spectrometry, the reaction behavior of the platinum-based drugs towards HSA and HB was investigated under different conditions considering the chloride concentration (4 or 100 mM) and the incubation time (24 and 48 h). In case of carboplatin, less than 6 % protein-bound platinum was detected. However, both cisplatin and oxaliplatin display a high affinity to the proteins investigated. Further information was obtained by means of LC/ESI-ToF-MS. In case of oxaliplatin, the complex [Pt(DACH)]2+ (DACH?=?C6N2H14) was identified interacting with HSA and HB. For cisplatin, different results were observed for the two proteins. The complex [Pt(NH3)2Cl]+ interacted predominantly with HSA and [Pt(NH3)2]2+ with HB.
Figure
  相似文献   

2.
A conventional electron capture dissociation (ECD) spectrum of a protein is uniquely characteristic of the first dimension of its linear structure. This sequence information is indicated by summing the primary c m+ and z m+? products of cleavage at each of its molecular ion’s inter-residue bonds. For example, the ECD spectra of ubiquitin (M?+?nH)n+ ions, n?=?7–13, provide sequence characterization of 72 of its 75 cleavage sites from 1843 ions in seven c (1–7)+ and eight z (1–8)+? spectra and their respective complements. Now we find that each of these c/z spectra is itself composed of “charge site (CS)” spectra, the c m+ or z m+? products of electron capture at a specific protonated basic residue. This charge site has been H-bonded to multiple other residues, producing multiple precursor ion forms; ECD at these residues yields the multiple products of that CS spectrum. Closely similar CS spectra are often formed from a range of charge states of ubiquitin and KIX ions; this indicates a common secondary conformation, but not the conventional α-helicity postulated previously. CS spectra should provide new capabilities for comparing regional conformations of gaseous protein ions and delineating ECD fragmentation pathways.
Figure
?  相似文献   

3.
We show that the addition of white dextrin during the electrochemical deposition of platinum nanostructures (nano-Pt) on a glassy carbon electrode (GCE) results in an electrochemically active surface that is much larger than that of platinum microparticles prepared by the same procedure but in the absence of dextrin. The nano-Pt deposits are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy, and electrochemical methods. The SEM images reveal deposits composed of mainly nanoparticles and short nanorods. The GCE was applied as a novel and cost-effective catalyst for methanol oxidation. The use of nano-Pt improves the electrocatalytic activity and the stability of the electrodes.
Figure
(A) SEM image of the Pt nanostructures. (B) Electrochemical responses of the Pt nanostructures (solid line) and Pt microparticles (line) in 1.4 M CH3OH + 0.5 M H2SO4 solution at υ?=?50 mV s?1. Novel Pt nanostructures were electrodeposited at the surface of glassy carbon electrode in the presence of white dextrin as an additive, which exhibit high electrocatalytic activity towards methanol oxidation due to their highly electrochemically active surface area.  相似文献   

4.
Electron capture dissociation (ECD) has shown great potential in structural characterization of glycans. However, our current understanding of the glycan ECD process is inadequate for accurate interpretation of the complex glycan ECD spectra. Here, we present the first comprehensive theoretical investigation on the ECD fragmentation behavior of metal-adducted glycans, using the cellobiose-Mg2+ complex as the model system. Molecular dynamics simulation was carried out to determine the typical glycan-Mg2+ binding patterns and the lowest-energy conformer identified was used as the initial geometry for density functional theory-based theoretical modeling. It was found that the electron is preferentially captured by Mg2+ and the resultant Mg+? can abstract a hydroxyl group from the glycan moiety to form a carbon radical. Subsequent radical migration and α-cleavage(s) result in the formation of a variety of product ions. The proposed hydroxyl abstraction mechanism correlates well with the major features in the ECD spectrum of the Mg2+-adducted cellohexaose. The mechanism presented here also predicts the presence of secondary, radical-induced fragmentation pathways. These secondary fragment ions could be misinterpreted, leading to erroneous structural determination. The present study highlights an urgent need for continuing investigation of the glycan ECD mechanism, which is imperative for successful development of bioinformatics tools that can take advantage of the rich structural information provided by ECD of metal-adducted glycans.
Figure
?  相似文献   

5.
The fragmentation reactions of the MH+ ions of Leu-enkephalin amide and a variety of heptapeptide amides have been studied in detail as a function of collision energy using a QqToF beam type mass spectrometer. The initial fragmentation of the protonated amides involves primarily formation of bn ions, including significant loss of NH3 from the MH+ ions. Further fragmentation of these bn ions occurs following macrocyclization/ring opening leading in many cases to bn ions with permuted sequences and, thus, to formation of non-direct sequence ions. The importance of these non-direct sequence ions increases markedly with increasing collision energy, making peptide sequence determination difficult, if not impossible, at higher collision energies.
Figure
?  相似文献   

6.
Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca2+, Mg2+, and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.
Figure
?  相似文献   

7.
The binding sites of two ruthenium(II) organometallic complexes of the form [(η6-arene)Ru(N,N)Cl]+, where arene/N,N = biphenyl (bip)/bipyridine (bipy) for complex AH076, and biphenyl (bip)/o-phenylenediamine (o-pda) for complex AH078, on the peptides angiotensin and bombesin have been investigated using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Fragmentation was performed using collisionally activated dissociation (CAD), with, in some cases, additional data being provided by electron capture dissociation (ECD). The primary binding sites were identified as methionine and histidine, with further coordination to phenylalanine, potentially through a π-stacking interaction, which has been observed here for the first time. This initial peptide study was expanded to investigate protein binding through reaction with insulin, on which the binding sites proposed are histidine, glutamic acid, and tyrosine. Further reaction of the ruthenium complexes with the oxidized B chain of insulin, in which two cysteine residues are oxidized to cysteine sulfonic acid (Cys-SO3H), and glutathione, which had been oxidized with hydrogen peroxide to convert the cysteine to cysteine sulfonic acid, provided further support for histidine and glutamic acid binding, respectively.
Fig. a
?  相似文献   

8.
Complex formation in platinum(IV)-cytosine-amino acid (glycine, α-alanine, lysine, or histidine) systems is studied using pH titration. Stability constants for 1:1:1 stoichiometry of complexes are determined. The stability of the mixed-ligand complexes varies in the following order: Lys < Ala < Gly < His. Reactions of aqueous solutions yields the following complexes: Pt(Cyt)(Gly?)Cl3 · 3H2O (I), pt(Cyt)(Ala?)Cl3 · 3H2O (II), Pt(Cyt)(Hist)Cl4 · 2H2O (III), and Pt(Cyt)(Lys)Cl4 · 2H2O (IV). 13C NMR, IR, and XPS spectra show that glycine and alanine are complexed via amino and carboxy groups, lysine via its α-amino group exclusively, and histidine via its amino group and heterocyclic N3 atom. Cytosine in these complexes is bidentate (it is complexed via C=O oxygen and N3 heterocyclic atoms).  相似文献   

9.
Here we investigate the effect of S-dipalmitoylation on the electron capture dissociation (ECD) behavior of peptides. The ECD and collision induced dissociation (CID) of peptides modified by covalent attachment of [(RS)-2,3-di(palmitoyloxy)-propyl] (PAM2) group to cysteine residues [C(PAM2)LEYDTGFK and RPPGC(PAM2)SPFK] were examined. The results suggest that ECD of S-dipalmitoylated peptides can provide both primary sequence information and structural information regarding the modification. The structural information provided by CID is complementary to that provided by ECD.
Figure
?  相似文献   

10.
New complexes of platinum and palladium were isolated with 4-nitrobenzoic hydrazide (4-NH) and characterized by spectroscopic techniques. Results show that the ligand is coordinated to metallic ions by the basic nitrogen of NH2 group and have the general structure cis-[M(4-NH)2X2] where M= Pt or Pd and x = Cl or I. The compound III, [Pt(4-NH)2I2], was found to display cytotoxicity (IC50 = 0.96 μmol L?1) against the K562 tumoral cell line. This complex is significantly more cytotoxic than cisplatin.   相似文献   

11.
It is shown that the gold surface is catalytically deactivated and smoothened upon removal of the Prussian blue (PB)–gold nanocomposite formed on the gold surface. Atomic force microscopy proves surface smoothening after PB removal. The voltammetric responses of Ru(NH3)6Cl3 on the smoothened surface remain unaffected, but the reactions that involve multistep and inner-sphere electron transfer are affected on the smoothened surface as exemplified by hydroquinone, ferrous oxalate redox reactions, and oxygen reduction. These effects are attributed to catalytic deactivation as a consequence of removal of the active sites.
Figure
It is shown that the gold surface is catalytically deactivated and smoothened upon removal of the Prussian blue (PB)–gold nanocomposite formed on the gold surface. Atomic force microscopy proves surface smoothening after PB removal. The voltammetric responses of Ru(NH3)6.Cl3 on smoothened surface remain unaffected, but the reactions that involve multistep and inner-sphere electron transfer are affected on the smoothened surface as exemplified by hydroquinone, ferrous oxalate redox reactions, and oxygen reduction. These effects are attributed to catalytic deactivation as a consequence of removal of the active sites. Graphical abstract shows the Au surface smoothening as a consequence of Prussian blue-gold nanocomposite (Au-PB) formation and removal  相似文献   

12.
The fragmentation patterns of a group of doubly protonated ([P + 2H]2+) and mixed protonated-sodiated ([P + H + Na]2+) peptide-mimicking oligomers, known as peptoids, have been studied using electron capturing dissociation (ECD) tandem mass spectrometry techniques. For all the peptoids studied, the primary backbone fragmentation occurred at the N-Cα bonds. The N-terminal fragment ions, the C-ions (protonated) and the C′-ions (sodiated) were observed universally for all the peptoids regardless of the types of charge carrier. The C-terminal ions varied depending on the type of charge carrier. The doubly protonated peptoids with at least one basic residue located at a position other than the N-terminus fragmented by producing the Z?-series of ions. In addition, most doubly protonated peptoids also produced the Y-series of ions with notable abundances. The mixed protonated-sodiated peptoids fragmented by yielding the Z?′-series of ions in addition to the C′-series. Chelation between the sodium cation and the amide groups of the peptoid chain might be an important factor that could stabilize both the N-terminal and the C-terminal fragment ions. Regardless of the types of the charge carrier, one notable fragmentation for all the peptoids was the elimination of a benzylic radical from the odd-electron positive ions of the protonated peptoids ([P + 2H]?+) and the sodiated peptoids ([P + H + Na]?+). The study showed potential utility of using the ECD technique for sequencing of peptoid libraries generated by combinatorial chemistry.
Figure
?  相似文献   

13.
Multiple gas phase ion/ion covalent modifications of peptide and protein ions are demonstrated using cluster-type reagent anions of N-hydroxysulfosuccinimide acetate (sulfo-NHS acetate) and 2-formyl-benzenesulfonic acid (FBMSA). These reagents are used to selectively modify unprotonated primary amine functionalities of peptides and proteins. Multiple reactive reagent molecules can be present in a single cluster ion, which allows for multiple covalent modifications to be achieved in a single ion/ion encounter and at the ‘cost’ of only a single analyte charge. Multiple derivatizations are demonstrated when the number of available reactive sites on the analyte cation exceeds the number of reagent molecules in the anionic cluster (e.g., data shown here for reactions between the polypeptide [K10 + 3H]3+ and the reagent cluster [5R5Na – Na]). This type of gas-phase ion chemistry is also applicable to whole protein ions. Here, ubiquitin was successfully modified using an FBMSA cluster anion which, upon collisional activation, produced fragment ions with various numbers of modifications. Data for the pentamer cluster are included as illustrative of the results obtained for the clusters comprised of two to six reagent molecules.
Figure
?  相似文献   

14.
Partial volumes $\bar V^0$ of amino acids in aqueous NH4Cl and NaCl solutions are discussed. The salts have different effects on water structure. The contributions of the charged NH 3 + and COO? groups of amino acids are found. Structural characteristics of hydrated complexes are calculated: partial volumes of water inside and outside the hydration sphere and hydration numbers. The same value of $\bar V^0$ (NH 3 + , COO?) is achieved at a higher NH4Cl concentration. The two salt systems with the same $\bar V^0$ (NH 3 + , COO?) have similar values of the partial volumes of water and hydration numbers.  相似文献   

15.
Fungi of the type Aspergillus sp. were immobilized on a cellulosic resin and used as a biosorbent for the on-line preconcentration and separation of Pt(IV) ions prior to their chemiluminescent determination via flow injection analysis. Biosorption and elution conditions were optimized, and the results compared to biosorbents based on the use of Chlorella vulgaris algae and Saccharomyces cerevisiae yeast in terms of preconcentration and selective retention of Pt(IV). The immobilized fungi presented here have a high potential for use in platinum biosorption. The procedure exhibits the currently lowest limit of detection (0.02 ng mL?1 of Pt) and very high selectivity. The procedure was applied to the determination of Pt(IV) in river water, road run-off, and wastewater samples.
Figure
Schematic diagram of flow injection manifold for on-line preconcentration/separation of Pt(IV) on immobilized fungi followed by its luminol-based chemiluminescent determination. The CL-FIA manifold was applied to the determination of platinum in river water, road run-off, and wastewater samples.  相似文献   

16.
We are reviewing the state of electrochemical sensing of H2O2 based on the use of metal nanoparticles. The article is divided into subsections on sensors based on nanoparticles made from Ag, Pt, Pd, Cu, bimetallic nanoparticles and other metals. Some sensors display high sensitivity, fast response, and good stability. The review is subdivided into sections on sensors based on heme proteins and on nonenzymatic sensors. We also discussed the challenges of nanoscaled sensors and their future aspects.
Figure
Sensing mechanism of (A) mediator-based enzyme biosensor, (B) mediator-less enzyme biosensor and (C) nonenzymatic sensors with metal nanoparticles for the electrocatalytic reduction toward H2O2  相似文献   

17.
Poly(ethyleneimine) (PEI) dendrimers up to the third generation (G3) were prepared by a divergent synthesis method from an ethylenediamine (EDA) core. The amine terminals were bonded with vinylbromide by a Michael addition reaction. Then, the bromide terminals were converted to amine groups using a Gabriel amine synthesis method. PEI dendrimers displayed pH-dependent luminescence, and their emission intensities at pH 6 increased over time. Fluorescence intensities also increased with increasing dendrimer generation from G1 to G3. Air-bubbling in aqueous solutions of dendrimers made to incorporate detectable amount of oxygen in dendrimers. EDA also behaved similarly in luminescence and oxygen incorporation.
Figure
Synthesis and Characterization of Poly(ethyleneimine) Dendrimers  相似文献   

18.
The fragmentation reactions of the MH+ ions as well as the b7, a7, and a7* ions derived therefrom have been studied in detail for the octapeptides MAAAAAAA, AAMAAAAA, AAAAMAAA, and AAAAAAMA. Ionization was by electrospray using a QqToF mass spectrometer, which allowed a study of the evolution of the fragmentation channels as a function of the collision energy. Not surprisingly, the product ion mass spectra for the b7 ions are independent of the original precursor sequence, indicating macrocyclization and reopening to the same mixture of protonated oxazolones prior to fragmentation. The results show that this sequence scrambling results in a distinct preference to place the Met residue in the C-terminal position of the protonated oxazolones. The a7 and a7* ions also produce product ion mass spectra independent of the original peptide sequence. The results for the a7 ions indicate that fragmentation occurs primarily from an amide structure analogous to that observed for a4 ions (Bythell et al. in J Am Chem Soc 132:14766–14779, 2010). Clearly, the rearrangement reaction they have proposed applies equally well to an ions as large as a7. The major fragmentation modes of the MH+ ions at low collision energies produce b7, b6, and b5 ions. As the collision energy is increased further fragmentation of these primary products produces, in part, non-direct sequence ions, which become prominent at lower m/z values, particularly for the peptides with the Met residue near the N-terminus.
Figure
?  相似文献   

19.
The aim of this study was to evaluate the biological and chemical response of Allium cepa L. exposed to inorganic selenium compounds. Besides the investigation of the total content of selenium as well as its chemical speciation, the Allium test was used to evaluate the growth of onion roots and mitotic activity in the roots’ meristem. The total content of selenium was determined by inductively coupled plasma mass spectrometry (ICP MS). High-performance liquid chromatography (HPLC), coupled to ICP MS, was used for the selenium chemical speciation. Results indicated that A. cepa plants are able to biotransform inorganic selenium compounds into their organic derivatives, e.g., Se-methylselenocysteine from the Se(IV) inorganic precursor. Although the differences in the biotransformation of selenium are due mainly to the oxidation state of selenium, the experiment has also shown a fine effect of counter ions (H+, Na+, NH4 +) on the response of plants and on the specific metabolism of selenium.
Figure
?  相似文献   

20.
The effects of eight different cations with ionic radii between 69 and 337 pm on the charging of peptides and proteins with electrospray ionization from aqueous acetate salt solutions are reported. Significant adduction occurs for all cations except NH4 +, and the average protein charge is lower when formed from solutions containing salts compared with solutions without salts added. Circular dichroism and ion mobility results show the protein conformations are different in pure water compared with salt solutions, which likely affects the extent of charging. The average charge of protein and peptide ions formed from solutions with Li+ and Cs+, which have Gibbs solvation free energies (GSFEs) that differ by 225 kJ/mol, is similar. Lower charge states are typically formed from solutions with tetramethylammonium and tetraethylammonium that have lower GSFE values. Loss of the larger cations that have the lowest GSFEs is facile when adducted protein ions are collisionally activated, resulting in the formation of lower analyte charge states. This reaction pathway provides a route to produce abundant singly protonated protein ions under native mass spectrometry conditions. The average protein and peptide charge with NH4 + is nearly the same as that with Rb+ and K+, cations with similar GSFE and ionic radii. This indicates that proton transfer from NH4 + to proteins plays an insignificant role in the extent of protein charging in native mass spectrometry.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号