首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A porous coordination polymer [Cu(3)(btc)(2)] with controllable size and morphology from nanocube to microoctahedron was readily synthesized in an ethanol-water mixture at room temperature by adjusting the concentration of the surfactant and the polymer shows size- and morphology-dependent sorption properties.  相似文献   

3.
We present an investigation of the interfacial reinforcement between a flexible folded-chain polymer (functionalized polypropylene-maleic anhydride-grafted polypropylene, MAPP) and a rodlike polymer (a themotropic liquid crystalline polymer, TCLP - poly(ester amide)). Fracture toughness was measured using an asymmetric double-cantilever beam test (ADCB). High fracture toughness at the bonding temperature of 200 degrees C indicates that a chemical reaction has occurred at the interface to provide a strong interaction between MAPP and TLCP. Despite the higher modulus of TLCP, the fracture was propagated in the TLCP phase because of inherent TLCP domain structure. An analysis on the locus of failure revealed that at constant bonding temperature the fracture toughness between MAPP and TLCP was influenced not only by the bonding temperature but also by the bonding time. The fracture toughness increased with the bonding temperature until 200 degrees C was reached and then decreased at higher bonding temperature. The fracture toughness increased with annealing time until it reached a plateau value. We ascribe the dependence of the fracture toughness on the bonding time to the progressive occurrence of two different failure mechanisms, adhesive failure and cohesive failure. The adhesive strength increased with bonding temperature whereas the cohesive strength decreased because of weaker adhesion between TLCP crystalline domains. The dependence of fracture toughness on bonding time was explained in terms of the TLCP crystalline domain structure.  相似文献   

4.
Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2474–2480  相似文献   

5.
Based on magnetic field directed self-assembly (MDSA) of the ternary Fe3O4@PANI/rGO nanocomposites, a facile and controllable molecularly imprinted electrochemical sensor (MIES) was fabricated through a one-step approach for detection of glutathione (GSH). The ternary Fe3O4@PANI/rGO nanocomposites were obtained by chemical oxidative polymerization and intercalation of Fe3O4@PANI into the graphene oxide layers via π–π stacking interaction, followed by reduction of graphene oxide in the presence of hydrazine hydrate. In molecular imprinting process, the pre-polymers, including GSH as template molecule, Fe3O4@PANI/rGO nanocomposites as functional monomers and pyrrole as both cross-linker and co-monomer, was assembled through N–H hydrogen bonds and the electrostatic interaction, and then was rapidly oriented onto the surface of MGCE under the magnetic field induction. Subsequently, the electrochemical GSH sensor was formed by electropolymerization. In this work, the ternary Fe3O4@PANI/rGO nanocomposites could not only provide available functionalized sites in the matrix to form hydrogen bond and electrostatic interaction with GSH, but also afford a promoting network for electron transfer. Moreover, the biomimetic sensing membrane could be controlled more conveniently and effectively by adjusting the magnetic field strength. The as-prepared controllable sensor showed good stability and reproducibility for the determination of GSH with the detection limit reaching 3 nmol L−1 (S/N = 3). In addition, the highly sensitive and selective biomimetic sensor has been successfully used for the clinical determination of GSH in biological samples.  相似文献   

6.
Highly stable covalently attached multilayer films were constructed by visible-light irradiation of hydrogen-bonding directed multilayer films of poly(allylamine) and poly(4-vinylphenol).  相似文献   

7.
We report the development of a novel technique for the encapsulation of molecular and condensed organic and inorganic substrates within hollow calcium carbonate microspheres; the process utilises precipitation at the oil-water interface of a pseudovesicular water-in-oil-in-water emulsion liquid membrane (ELM) system in order to create an inorganic shell around the pre-dispersed media.  相似文献   

8.
The polymerization induced phase separation (PIPS) process in a polymer dispersed liquid crystal (PDLC) system was studied by using Monte-Carlo (MC) simulation methods. In particular, the dependence of the phase separation between liquid crystal and polymer on the parameters, such as temperature γ = ε/kT, polymerization reactivity p and curing time tc, was examined. It was found that the pair correlation function G(a, t) decreases with the decrease of temperature when the polymerization reactivity p is fixed. Our results also revealed that at a constant temperature, the final value of G(a) first increases with the increasing of p, and finally approaches a constant value. This observation provides us an effective way of controlling the size of liquid crystal droplets as well as their distributions. It was observed that the equilibrium value of G(a) increases as the curing time increases when both temperature and p are kept constant. This is another way of controlling the size of liquid crystal droplets.  相似文献   

9.
Abstract

The polymerization induced phase separation (PIPS) process in a polymer dispersed liquid crystal (PDLC) system was studied by using Monte-Carlo (MC) simulation methods. In particular, the dependence of the phase separation between liquid crystal and polymer on the parameters, such as temperature γ = ?/kT, polymerization reactivity p and curing time t c, was examined. It was found that the pair correlation function G(a, t) decreases with the decrease of temperature when the polymerization reactivity p is fixed. Our results also revealed that at a constant temperature, the final value of G(a) first increases with the increasing of p, and finally approaches a constant value. This observation provides us an effective way of controlling the size of liquid crystal droplets as well as their distributions. It was observed that the equilibrium value of G(a) increases as the curing time increases when both temperature and p are kept constant. This is another way of controlling the size of liquid crystal droplets.  相似文献   

10.
By grafting (aminopropyl)triethoxysilane (APTES) as the buffer layer on poly(ethylene terephthalate) (PET) surface, the SAMs ofoctadecyltrichlorosilane (OTS), phenyltrichlorosilane (PTCS), vinyltrichlorosilane (VTCS), andp-tolyltrichlorosilane (TTCS) were fabricated on the flexible polymer substrate. The properties of SAMs were accurately controlled by adjusting the immersing time of substrates in the solutions and the concentration of the solutions. The SAMs acted as templates, and TiO2 micropattern was successfully deposited on OTS, TTCS, and PTCS SAMs.  相似文献   

11.
Bi W  Tian M  Row KH 《The Analyst》2012,137(9):2017-2020
Facile methods were developed to prepare hybrid poly(ionic liquid)-bonded silica for a wide range of applications, particularly in analytical chemistry. The hybrid material obtained was evaluated by comparing its adsorption capacity with other conventional separation materials. In addition, the hybrid material has the potential for industrial scale production.  相似文献   

12.
We reported an interfacial self-assembly of regularly layered porous poly(4-vinylpyridine)(P4VP) films at the interfaces of water-chloroform or -dichloroethane.The porous diameters were in the range from hundred nanometers to several micrometers.It was revealed that formation of such kind of porous materials was solvent dependent.Moreover,cyclic Ag nanoparticles could be grown in the porous P4VP films to form Ag-P4VP nanohybrids under radiation.  相似文献   

13.
A topologically extended model of a chemically cross-linked hydrogel of poly(vinyl alcohol) (PVA) at high hydration degree has been developed for a molecular dynamics simulation with atomic detail at 323 K. The analysis of the 5 ns trajectory discloses structural and dynamic aspects of polymer solvation and elucidates the water hydrogen bonding and diffusion in the network. The features of local polymer dynamics indicate that PVA mobility is not affected by structural constraints of chemical junctions at the investigated cross-linking density, with a prevailing dumping effect due to water interaction. Simulation results are validated by a favorable comparison with findings of an incoherent quasi-elastic neutron scattering study of the same hydrogel system.  相似文献   

14.
In terms of the polymer integral equation theory, structuring in ionic liquids containing flexiblechain polymers under the conditions of good solubility is studied for the first time. The influence of the polymer concentration on the structural properties of system components is studied at different lengths of polymer molecules. The structural organization of the ionic liquids is shown to be fairly stable after addition of the polymer. When there is attraction between the polar groups of cations of the ionic liquid and polymer molecules, the calculated structural factors suggest intermediate-range scales of polymer-component ordering. Given this, for any considered length of polymer molecules, there is a range of polymer concentrations in which the characteristic scale of ordering decreases with an increase in polymer density according to a power law.  相似文献   

15.
16.
In this paper, shape memory polymers based on poly(vinyl alcohol) (SM-PVA) cross-linked with different contents of glutaraldehyde were prepared. Because PVA is a hydrophilic polymer, all samples prepared always have a small number of water molecules exposed to air, and the water molecules are helpful for shape memory characteristics. The influences of water contents on the prepared materials were investigated. The properties of SM-PVA were investigated by dynamic–mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis. Shape memory behavior of SM-PVA, depending on the switching of chain segments, occurred at around T g. Thermo-mechanical cycle test was performed to investigate shape memory properties, including the percentage shape recovery, shape recovery ratio, and percentage shape fixity. The studied materials show promising shape memory and cyclic behavior indicative of potential applications of SM-PVA as shape memory materials.  相似文献   

17.
The crystal structures of [Co 2L(Cl)](ClO 4) 3 ( 1), [Co 2L(Br)](ClO 4) 3 ( 2), [Co 2L(OH)(OH 2)]I 3 ( 3), and [Co 2L (1)(Cl)](ClO 4) 3 ( 4), the density functional theory calculations, as well as the binding constants of [Co 2L] (4+) toward Cl (-) and Br (-) and of [Co 2L (1)] (4+) toward Cl (-), are reported in this paper (L = N[(CH 2) 2NHCH 2(C 6H 4- p)CH 2NH(CH 2) 2] 3N, L (1) = N[(CH 2) 2NHCH 2(C 6H 4- m)CH 2NH(CH 2) 2] 3N). The rigid dicobalt(II) cryptate [Co 2L] (4+) shows the recognition of Cl (-) and Br (-) but not of F (-) and I (-), because of the size matching to its rigid cavity. We also found that the relative rigid tripodal skeleton of L than that of L (1) results in the higher affinity of [Co 2L] (4+) toward Cl (-). Magnetic susceptibility measurements of 1 and 2 indicate that the two Co(II) atoms in the cryptates are antiferromagnetically coupled through the Cl (-)/Br (-) bridge, with g = 2.19, J = -13.7 cm (-1) for 1, and g = 2.22, J = -17.1 cm (-1) for 2.  相似文献   

18.
Long alpha-Fe(2)O(3) hollow fibers have been prepared through a facile sol-gel combined co-electrospinning technique using ferric citrate as precursor, and alpha-Fe and gamma-Fe(2)O(3) hollow fibers have been obtained by reduction and reoxidation at different conditions. The outer diameter of the as-prepared hollow fibers is 0.5-5 microm with wall thickness of 200-800 nm. The obtained tubular fibers were characterized by thermal gravimetric (TG), FT-IR spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman techniques. In addition, magnetic properties of alpha-Fe and gamma-Fe(2)O(3) hollow fibers have also been investigated.  相似文献   

19.
A nanometer-scale optical switch and transistor were fabricated with thioacetyl-end-functionalized poly(para-phenylene ethynylene)s and Au nanogap electrodes by self-assembly. With photoirradiation, the switch can be switched on/off quickly with a switching ratio as high as 1000. Moreover, the device works well as a p-type transistor. With an increase in gate bias, strong conductance oscillation was observed in this self-assembled transistor (under low temperature 147 K), which is very likely due to single-electron charging oscillations arising from electron tunneling through the nanometer-scale transistor.  相似文献   

20.
Ag-Pd bimetallic nanoparticles were prepared directly in ultrathin TiO(2)-gel films by a stepwise ion-exchange/reduction approach. Ion-exchange sites were created in ultrathin films using Mg(2+) ions as template. Ag(+) ion was then incorporated by ion exchange, and converted into metallic nanoparticles by low-temperature H(2) plasma, regenerating ion-exchange sites. The same procedure was then carried out for Pd(2+) ion, producing Pd-on-Ag bimetallic nanoparticles, as TEM observation and plasmon resonance absorption indicate. By contrast, reversed metal incorporation procedure appeared to give a mixture of individual Ag and Pd nanoparticles, as confirmed by TEM, absorption spectroscopy and X-ray photoelectron spectroscopy. For hydrogenation of methyl acrylate, the catalytic activity of the Pd-on-Ag nanoparticle is 367 times as large as that of commercial Pd black and 1.6 times as large as that of Pd monometallic nanoparticle. The outstanding catalytic activity was explicable by the large fraction of the surface-exposed Pd atoms. The formation process of the bimetallic nanoparticle and their general morphological feature are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号