首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biomass has the potential to serve as a sustainable source of energy and organic carbon for our industrialized society. The focus of this Review is to present an overview of chemical catalytic transformations of biomass-derived oxygenated feedstocks (primarily sugars and sugar-alcohols) in the liquid phase to value-added chemicals and fuels, with specific examples emphasizing the development of catalytic processes based on an understanding of the fundamental reaction chemistry. The key reactions involved in the processing of biomass are hydrolysis, dehydration, isomerization, aldol condensation, reforming, hydrogenation, and oxidation. Further, it is discussed how ideas based on fundamental chemical and catalytic concepts lead to strategies for the control of reaction pathways and process conditions to produce H(2)/CO(2) or H(2)/CO gas mixtures by aqueous-phase reforming, to produce furan compounds by selective dehydration of carbohydrates, and to produce liquid alkanes by the combination of aldol condensation and dehydration/hydrogenation processes.  相似文献   

2.
The happy medium: A new catalytic pathway for the synthesis of the linear primary C(8) alcohol products 1-octanol and dioctyl ether from furfural and acetone has been developed using retrosynthetic analysis. This opens a general strategy for the synthesis of medium-chain-length alcohols from carbohydrate feedstock.  相似文献   

3.
4.
Pairing the electrocatalytic hydrogenation reaction with different anodic reactions driven by renewable electricity offers a greener way for producing value-added chemicals and fuels. In particular, replacing the sluggish water oxidation with a biomass-based upgrading reaction can reduce the overall energy cost, thus allowing for the simultaneous generation of high-value products at both electrodes. This mini-review summarized the recent progress in paired electrolysis of biomass-derived compounds, particularly the furanic chemicals. Some perspectives and outlooks were proposed for further improvements in this research area.  相似文献   

5.
在化石燃料储量不断减少,温室效益趋势加重的情况下,寻求可以替代化石燃料的可再生燃料已经引起了人们的广泛关注.人们普遍认为源于生物质的2,5-二甲基呋喃(DMF)是很有前景的一种可再生液体交通燃料,为此本文作者对近年来生物质制备DMF的方法及途径进行了综述,同时对今后的研究作了展望.  相似文献   

6.
杨辰昕  陈鹤南  彭焘  梁柏耀  张云  赵伟 《催化学报》2021,42(11):1831-1842
为节能减排和能源结构调整以快速实现"碳中和",发展可再生、清洁与绿色的能源以替代传统化石能源已成为当今世界高质量发展的重要共识.生物质能作为一种典型的可再生能源,具有储量丰富、分布广泛、可有效转化成各种化工原料和燃料等特点逐步受到广泛关注并成为科研热点.木质素是生物质的重要组成部分,其含氧量低、热值高,可转化成高热值燃料;同时,木质素富含芳香结构单元,可以转化成各类高附加值化工原料及医药中间体.木质素解聚及其对应单体升级转化是木质素高效转化利用的关键技术.当前,传统热催化是其主要应用技术手段.然而,该类方法常在高温高压下进行,需消耗大量能源及众多繁琐操作步骤,不易规模化生产.相对而言,电催化技术能实现常温常压的木质素解聚及对应单体的升级转化,采用由可再生能源(例如风能、太阳能等)获得的清洁电力,则能实现完全绿色可持续生产,对未来经济社会的发展及"碳中和"的目标具有重大意义.本文综述了近年来电催化技术在木质素升级转化成高附加值燃料和化学品方面的应用,尤其是在木质素解聚及其对应单体于水溶液相关电解质中升级转化方面的应用.(1)针对总体研究背景进行了概述,总结了木质素研究的重要意义并概括了当前木质素研究的主要思路,并简单介绍了木质素结构单元及连接键等基本性质;(2)针对电催化技术在木质素应用方面进行了总结,包括反应类型和反应路径等;(3)总结了木质素常用的几种典型表征技术手段,如GC-MS、NMR、IR等;(4)总结了电催化木质素解聚及其单体升级转化研究现状,对电催化木质素解聚应用中木质素前体类型、电解质种类和电还原/氧化催化剂进行了详细介绍及客观评价,并对几种代表性单体的电催化加氢反应及氧化反应做了详细评述.在此基础上展望了电催化技术在木质素升级转化中的应用前景,指出了当前电催化技术在木质素升级转化应用中存在的实际问题,提出了电催化技术在木质素升级转化中的发展方向.  相似文献   

7.
In view of the diminishing oil resources and the ongoing climate change, the use of efficient and environmentally benign technologies for the utilization of renewable resources has become indispensible. Therein, hydrogenolysis reactions offer a promising possibility for future biorefinery concepts. These reactions result in the cleavage of C-C and C-O bonds by hydrogen and allow direct access to valuable platform chemicals already integrated in today's value chains. Thus, hydrogenolysis bears the potential to bridge currently available technologies and future biomass-based refinery concepts. This Review highlights past and present developments in this field, with special emphasis on the direct utilization of cellulosic feedstocks.  相似文献   

8.
The increase in natural gas reserves makes methane a significant hydrocarbon feedstock. However, the direct catalytic conversion of methane into liquid fuels and useful chemicals remains a great challenge,and many studies have been devoted to this field in the past decades. Electrocatalysis is considered as an important alternative approach for the direct conversion of methane into value-added chemicals, although many other innovative methods have been developed. This review highlights recent advances in electrocatalytic conversion of methane to ethylene and methanol, two important chemicals. The electrocatalytic systems efficient for methane conversions are summarized with an emphasis on catalysts and electrolytes. The effects of reaction conditions such as the temperature and the acid–base property of the reaction medium are also discussed.  相似文献   

9.
Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels   总被引:2,自引:0,他引:2  
Lignocellulosic biomass is the most abundant and bio-renewable resource with great potential for sustainable production of chemicals and fuels. This critical review provides insights into the state-of the-art accomplishments in the chemocatalytic technologies to generate fuels and value-added chemicals from lignocellulosic biomass, with an emphasis on its major component, cellulose. Catalytic hydrolysis, solvolysis, liquefaction, pyrolysis, gasification, hydrogenolysis and hydrogenation are the major processes presently studied. Regarding catalytic hydrolysis, the acid catalysts cover inorganic or organic acids and various solid acids such as sulfonated carbon, zeolites, heteropolyacids and oxides. Liquefaction and fast pyrolysis of cellulose are primarily conducted over catalysts with proper acidity/basicity. Gasification is typically conducted over supported noble metal catalysts. Reaction conditions, solvents and catalysts are the prime factors that affect the yield and composition of the target products. Most of processes yield a complex mixture, leading to problematic upgrading and separation. An emerging technique is to integrate hydrolysis, liquefaction or pyrolysis with hydrogenation over multifunctional solid catalysts to convert lignocellulosic biomass to value-added fine chemicals and bio-hydrocarbon fuels. And the promising catalysts might be supported transition metal catalysts and zeolite-related materials. There still exist technological barriers that need to be overcome (229 references).  相似文献   

10.
11.
Applied Biochemistry and Biotechnology - Enriched culture techniques have been used to isolate microbial cultures exhibiting growth on synthesis gas components. Three rod-shaped, gram-positive...  相似文献   

12.
13.
Applied Biochemistry and Biotechnology - Biological systems can convert renewable resources, including lignocellulosic biomass, starch crops, and carbon dioxide, into fuels, chemicals, and...  相似文献   

14.
15.
Catalytic asymmetric transfer hydrogenation of rac-furoin and furil produces hydrofuroin with up to 99% ee and 9:1 dr. This reaction provides an exceptionally easy access to optically active hydrofuroins in two straightforward steps from biomass-derived furfural (global production 200?000-300?000 t annually) using benzoin condensation.  相似文献   

16.
Reactions of CuCl with Te(Ph)SiMe3 and solublizing trialkylphosphine ligands afford a series of polynuclear copper-phenyltellurolate complexes that has been structurally characterized. The formation of the complexes is found to be highly dependent on the ancillary phosphine ligand used. The synthesis and structures of [Cu2(mu-TePh)2(PMe3)4] 1, [Cu4(mu3-TePh)4(PPr(i)3)3] 2, [Cu5(mu-TePh)3(mu3-TePh)3(PEt3)3][PEt3Ph] 3, and [Cu12Te3(mu3-TePh)6(PEt3)6] 4 are described. The telluride (Te(2-)) ligands in 4 arise from the generation of TePh2 in the reaction mixtures. The subsequent co-condensation of clusters 3 and 4 leads to the generation of the nanometer sized complex [Cu29Te9(mu3-TePh)10(mu4-TePh)2(PEt3)8][PEt3Ph] 5 in good yield, in addition to small amounts of [Cu39(mu3-TePh)10(mu4-TePh)Te16(PEt3)13] 6. These complexes are formed via the photo elimination of TePh2. The cyclic voltammogram of 5 in THF solution exhibits two oxidation waves, assigned to the oxidation of the Cu(I) centers.  相似文献   

17.
Information and organic molecules were the subject of two previous works from this lab (Graham and Schacht, J. Chem. Inf. Comput. Sci. 2000, 40, 187; Graham, J. Chem. Inf. Computer Sci. 2002, 42, 215). We delve further in this paper by examining organic structure graphs as objects of Brownian information processing. In so doing, tools are introduced which quantify and correlate molecular information to several orders. When the results are combined with energy data, an enhanced informatic view of covalent bond networks is obtained. The information properties of select molecules and libraries are illustrated. Notably, Brownian processing accommodates all possible compounds and libraries, not just ones registered in chemical databases. This approach establishes important features of the statistical structure underlying carbon chemistry.  相似文献   

18.
Applied Biochemistry and Biotechnology - A process has been developed for the treatment of municipal solid waste to separate and recover the cellulosic biomass from the nonbiomass components. The...  相似文献   

19.
20.
Targeting of drugs and genes to specific cell types is an emerging paradigm in the treatment of many medical conditions. However, targeting structures such as peptides are susceptible to rapid inactivation in vivo. To address this problem, novel targeting molecules can now be rapidly synthesized using a combinatorial approach. Methods to screen the large libraries created in this process are often lacking or compatible only with solution-based screening. This report describes a high-throughput cell-based method utilizing flow cytometry, capable of rapidly screening large libraries of molecules simultaneously for biological functionality and stability. In this method, each library molecule is attached to a microsphere exhibiting a unique set of optical properties, or "fingerprint", conferring modularity and multiplex capability. We investigated the multiplex capability of our flow cytometric method to determine its capacity for high-throughput screening. Current instrumentation in our laboratory allows the screening of at least 75 unique compounds in a single well, a number comparable to available solution-based assays. In state-of-the-art configuration, however, this methodology can support the screening of up to 1875 compounds per well, achieving high-throughput potential in a single multiwell plate. We also investigated the binding capability of targeted microspheres to adherent target cells. These microspheres exhibited a 12-fold increase in binding over control, untargeted microspheres. Competitive inhibition experiments with soluble ligand confirmed the specificity of microsphere binding. Overall, the methodology proposed here is capable of quickly and effectively screening large libraries of targeting molecules using instrumentation readily available to the greater research community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号