首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The phase transition between the cubic diamond (cd) and beta-tin (β-Sn) phases of Si under pressure and the region of interaction of the two phases are studied by first-principles total energy calculations. For a non-vibrating crystal we determine the pressure of the thermodynamic phase transition p(t) = 96 kbar, the Gibbs free energy barrier at p(t) of ΔG = 19.6 mRyd/atom that stabilizes the phases against a phase transition and the finite pressure range in which both phases are stable. We show that the phases in that pressure range are completely described by three equilibrium lines of states along which the structure, the total energy E, the hydrostatic pressure p that would stabilize the structure and the values of G all vary. Two equilibrium lines describe the two phases (denoted the ph-eq line, ph is cd or β-Sn phase); a third line is a line of saddle points of G with respect to structure (denoted the sp-eq line) that forms a barrier of larger G against instability of the metastable ranges of the phase lines. An important conclusion is that the sp-eq line merges with the two ph-eq lines: one end of the sp-eq line merges with the cd-eq line at high pressure, the other end merges with the β-Sn-eq line at low pressure. The mergers end the barrier protecting the metastable ranges of the two ph-eq lines, hence the lines go unstable beyond the mergers. The mergers thus simplify the phase diagram by providing a natural termination to the stable parts of all metastable ranges of the ph-eq lines. Although 96 kbar is lower than the experimental transition pressure, we note that phonon pressure raises the observed transition pressure.  相似文献   

2.
采用基于密度泛函理论的平面波赝势方法,研究了沿[001]方向单轴应变条件下Fe从体心立方结构(bcc,α相)到六角密排结构(hcp,ε相)相变的临界压力、相变路径、相变势垒以及相变过程中原子磁性的变化.结果发现:单轴应变条件下Fe从α到ε结构的相变路径与以前理论计算模拟给出的静水压力条件下的相变路径明显不同;原子磁矩沿着相变路径突然降低,同时伴随着能量和体积的突然变化,是典型的一阶磁性相转变,表明原子磁性的丧失导致了bcc结构不稳定而向hcp结构转变.对单轴应变下吉布斯自由能的计算表明,相变势垒随着单轴应 关键词: 相变 单轴应变 第一性原理 铁  相似文献   

3.
We have presented the behavior of a shallow donor impurity with binding energy in cylindrical-shaped GaAs/Ga0.7Al0.3As quantum well wires under high hydrostatic pressure values. Our results are obtained in the effective mass approximation using the variational procedures. In our calculations, we have not considered the pressure related Γ−X crossover effects. The hydrostatic pressure dependence on the expectation value of ground state binding energy is calculated as a function of wire radius at selected temperatures. We have also discussed the effects of high hydrostatic pressure and temperature on some physical parameters such as effective mass, dielectric constant, and barrier height. A detailed analysis of these calculations has proved that the effective mass is the most important parameter, which explains the dependency of donor impurity binding energies on the high hydrostatic pressure values.  相似文献   

4.
In this article, we present electron momentum density distribution and phase transition in SrO. The experimental values of momentum density have been measured using 5Ci 241Am Compton spectrometer and analyzed using theoretical data obtained from the ab-initio linear combination of atomic orbitals method. The first-principles calculations of the total energy of SrO as a function of cell volume have also been carried out for the cubic rocksalt (B1) and cesium chloride (B2) phases. Several structural parameters, i.e. equilibrium lattice constant, transition pressure, bulk modulus, etc. of B1 and B2 phases have been calculated and compared with the previous investigations. We conclude that the stable phase of SrO is B1 and the phase transition from B1 to B2 occurs at 35.8?GPa.  相似文献   

5.
Using density functional theory and density functional perturbation theory we have studied the effects of hydrostatic pressure on lattice dynamics, dielectric and thermodynamic properties of the rocksalt (NaCl) and CsCl phases of SrO. The stability of the NiAs type structure, experimentally confirmed to be stable in BaO, is also investigated. Studying the lattice dynamics of the NaCl and CsCl phases at various pressures, in the range of the phase stability, we have found the lattice dynamical instabilities which govern the phase transitions between NaCl and CsCl phases with increasing and decreasing pressure. By monitoring the behaviour of the found soft modes, we have calculated the transition pressures upon compression and decompression of SrO crystal. Lattice dynamics calculations reveal that the rocksalt and CsCl structures are unstable with respect to the soft transversal acoustic modes at single points of the Brillouin zone, which points to the fact that the transitions are of displacive type. Responses to electric fields and thermodynamic properties at high pressures are also given and discussed. All our results are in a good agreement with experimental data where applicable.  相似文献   

6.
First-principles calculations are performed to investigate pressure effects on structure, magnetism, martensitic phase transition and Curie temperatures of Mn2PtGa Heusler alloy in framework of the density functional theory. It is shown that Mn2PtGa prefer to crystallize in the inverse Heusler type structure. Besides, we predict an extraordinary occurrence of pressure induced metallic ferrimagnetism to half-metallic ferromagnetism transition in cubic phase of Mn2PtGa alloy under hydrostatic pressure up to 43 GPa and the half-metallic ferromagnetism is found to be robust even the lattice further compression to 90 GPa. However, with the pressure up to 100 GPa, the spin-down gap starts to close and the half metallicity begin to disappear, while with the pressure increasing from 100 GPa to 300 GPa, the alloy returns to metallic characteristic. In addition, the energy difference between the austenitic and martensitic phases is found to increase with increasing pressure followed by a decrease when pressure reaches to 43 GPa, which implies a variation trend of martensitic phase transition temperature. Furthermore, Curie temperatures in both austenitic and martensitic phases are estimated under pressure by using the standard mean-field approximation which agrees well with the theoretical results in literature. The robustness of the half metallicity, magnetic transition and the high Curie temperature under pressure make Mn2PtGa alloy a promising candidate for applications in spintronic devices.  相似文献   

7.
The full-potential linear muffin-tin orbital method (FP-LMTO) within the local density approximation (LDA) is used to calculate the electronic band structures and the total energies of MgTe in its stable (NiAs-B8) and high pressure phases. The latter provide us with the ground state properties such us lattice parameter, bulk modulus and its pressure derivatives. The transition pressure at which this compound undergoes the structural phase transition from the NiAs to CsCl phase is calculated. The energy band gaps and their volume and pressure dependence in the stable NiAs-B8 phase are investigated. The ground state properties, the transition pressure are found to agree with the experimental and other theoretical results. The elastic constants at equilibrium in both NiAs and CsCl structure are also determined.  相似文献   

8.
The tight-binding linear muffin tin orbital (TB-LMTO) method within the local density approximation is used to calculate structural, electronic and magnetic properties of GdN under pressure. Both nonmagnetic (NM) and magnetic calculations are performed. The structural and magnetic stabilities are determined from the total energy calculations. The magnetic to ferromagnetic (FM) transition is not calculated. Magnetically, GdN is stable in the FM state, while its ambient structure is found to be stable in the NaCl-type (B1) structure. We predict NaCl-type to CsCl-type structure phase transition in GdN at a pressure of 30.4 GPa. In a complete spin of FM GdN the electronic band picture of one spin shows metallic, while the other spin shows its semiconducting behavior, resulting in half-metallic behavior at both ambient and high pressures. We have, therefore, calculated electronic band structures, equilibrium lattice constants, cohesive energies, bulk moduli and magnetic moments for GdN in the B1 and B2 phases. The magnetic moment, equilibrium lattice parameter and bulk modulus is calculated to be 6.99 μB, 4.935 Å and 192.13 GPa, respectively, which are in good agreement with the experimental results.  相似文献   

9.
Raman scattering spectra of RbMnCl3 are measured at room temperature under high hydrostatic pressure. The results are interpreted based on first principles lattice dynamics calculations. The experimental data obtained correlate with the calculations in the low frequency domain but disagree slightly in the region of high-frequency vibrations. The transition from the hexagonal to the cubic perovskite phase observed earlier (near 0.7 GPa) was confirmed, and new transitions to lower symmetry distorted phases were discovered (at 1.1 and 5 GPa).  相似文献   

10.
11.
Self-consistent spin-polarized APW calculations have been performed to determine the energy band structure of metallic vanadium in an assumed ferromagnetic b.c.c. structure as a function of lattice parameter. The statistical exchange (‘Xα’) and muffin-tin approximations were used. At each lattice parameter for which a calculation was performed, the cohesive energy, the pressure, and the magnetization were calculated. The calculated cohesive energy and pressure agree fairly well with experiment. The calculations also correctly predict the absence of a magnetic moment for vanadium at its equilibrium lattice constant. However, a nonmagnetic-to-magnetic transition is found to occur abruptly at a lattice constant which is about a factor of 1·25 larger than the equilibrium value, and which is in good qualitative agreement with the appearance of a local magnetic moment in certain vanadium alloys.  相似文献   

12.
The hydrostatic pressure dependence of the principal energy gaps and of the optical properties of GaX (X = P, As and Sb) has been calculated using the full potential-linearized augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) for the exchange and correlation potential is applied. Also, we have used the Engel–Vosko GGA formalism, which optimizes the corresponding potential for band-structure and the optical properties calculations. Structural properties such as equilibrium lattice constants, the bulk modulus, and its pressure derivatives were calculated for GaP, GaAs, and GaSb in the zinc-blende structure (ZB). We have found that the results of the structural properties calculations are in agreement with those of ab initio and experimental data. In general, the pressure dependence of the principal energy gaps is compared to other values. The same is for the pressure coefficient. However, for the same structure, the comparison of our results with those of experimental and theoretical calculations shows good agreement. On the other hand, the effect of the applied pressure is clearly seen in the optical properties especially near the energy transition regions.  相似文献   

13.
Pressure dependence of physical properties of GaN/AlN multi-quantum wells (MQWs) was investigated using ab intio calculations. The influence of pressure was divided into two main contributions: pressure affecting the properties of GaN and AlN bulk semiconductors and an influence on systems of polar quantum wells deposited on various substrates. An influence of hydrostatic, uniaxial, and tetragonal strain on the crystallographic structure, polarization (piezoelectricity), and the bandgap of the bulk systems is assessed using ab initio calculations. It was shown that when a partial relaxation of the structure is assumed, the tetragonal strain may explain an experimentally observed reduction of pressure coefficients for polar GaN/AlN MQWs. The MQWs were also simulated directly using density functional theory (DFT) calculations. A comparison of these two approaches confirmed that nonlinear effects induced by the tetragonal strain related to lattice mismatch between the substrates and the polar MQWs systems are responsible for a drastic decrease of the pressure coefficients of photoluminescence (PL) energy experimentally observed in polar GaN/AlGaN MQWs.  相似文献   

14.
We have investigated the structural and electronic properties of monophospides of thorium, uranium and neptunium. The total energy as a function of volume is obtained by means of the self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). From the present study with the help of total energy calculations it is found that ThP, UP and NpP are stable in NaCl-type structure at ambient pressure. The structural stability of ThP, UP and NpP changes under the application of pressure. We predict a structural phase transition from NaCl-type (B1-phase) structure to CsCl-type (B2-phase) structure for these phospides in the pressure range of 37.0-24.0 GPa (ThP-NpP). We also calculate lattice parameter (a0), bulk modulus (B0), band structure and density of states. From energy band diagram it is observed that ThP, UP and NpP exhibit metallic behavior. The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.  相似文献   

15.
利用密度泛函理论(DFT)研究了AlN的六角纤锌矿结构(B4),岩盐矿结构(B1),过渡态中间相六方结构(Hexa)和过渡态中间相四方结构(Tetra),计算了AlN在不同压力下B4和B1结构和过渡态中间相六方结构和四方结构的焓值,计算发现B4和B1相的转变压力是17.27 GPa,低压区中间相六方结构稳定,高压区中间相四方结构更稳定,AlN的常见的B4结构是直接带隙结构,带隙宽度是4.095 eV,带隙宽度与外压力之间关系符合二次函数方程,与其它理论研究结果一致.  相似文献   

16.
In this paper we present the results obtained from first-principles calculations of the effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide, using the pseudopotential plane-wave method (PP-PW) based on density functional theory within the Teter and Pade exchange-correlation functional form of the local density approximation (LDA). The lattice parameter, molecular and crystal densities, near-neighbour distances, independent elastic constants, bulk modulus, shear modulus, anisotropy factor and energy bandgaps of (B3) BP under high pressure are presented. The results showed a phase transition pressure from the zinc blende to rock-salt phase at around 1.56?Mbar, which is in good agreement with the theoretical data reported in the literature.  相似文献   

17.
采用基于密度泛函理论的平面波赝势方法,研究了三轴加载的非静水压力和静水压力对铁从体心立方结构(bcc,α相)到六角密排结构(hcp,ε相)相变压力和磁性的影响,结果发现:在0—18 GPa压力范围内,相对静水压力条件,随着压力的升高,bcc结构的原子磁矩在非静水压力下降低得更快;在非静水压力下,相变更容易发生,相变压力随着非静水压力程度的增加而降低;并且对非静水压力对相变压力影响的物理机理进行了讨论. 关键词: 相变 非静水压力 第一性原理 铁  相似文献   

18.
The work is devoted to present a theoretical study of the influences of external probes, such as applied electric field and hydrostatic pressure, on the electron and hole states in a Pöschl–Teller quantum well. The calculations have been done in the framework of the variational method. The dependence of the ground state energy of an electron and/or hole confined in the quantum well has been obtained as a function of the applied electric field and hydrostatic pressure. Different values of the asymmetry parameters of the Pöschl–Teller potential as well as temperature have been considered. It is shown that as a result of the increase in the electric field there is an augment of the ground state energy, and also that by increasing the quantum well width the effects of applied electric field are strengthened. It is obtained from the calculations that the ground state energy is a decreasing (increasing) function of the hydrostatic pressure (temperature). It is found that in the high pressure regime the energy grows with pressure, which is a previously unknown result. In the case of holes, the energy is always an increasing function both of the pressure and the temperature. Besides, the behavior of the photoluminescence peak energies associated to transitions between the ground states of electrons and heavy holes in the system is also reported.  相似文献   

19.
A simple pseudopotential model is used for the calculation of the phonon spectra at the equilibrium volume and under pressure. The model is based on the secondorder perturbation theory with the local pseudopotential acting on thes electrons while thed electrons contribution is simulated by the repulsive Born-Mayer interatomic potential. Pressure influence on the lattice properties was studied for small compressions (mode Grüneisen parameters) as well as for ultrahigh pressure (equation of state up to 1 TPa). Results of the lattice dynamics calculations were used for determining temperature dependence of the lattice heat capacity and of the macroscopic Grüneisen parameter. The Kohn anomaly at the small wave vectors obtained previously in palladium, platinum and rhodium affects strongly the temperature dependence at low temperature.  相似文献   

20.
The effect of hydrostatic pressure on a BaF2 crystal was studied within the shell model in the pair-wise potential approximation. The structural phase transition from the cubic to orthorhombic phase was simulated. The behavior of the unit-cell parameters of the α-and β-BaF2 phases under hydrostatic pressure (from 0 to 12 GPa) was investigated. The fundamental vibration frequencies of BaF2 under hydrostatic pressure (0–3.5 GPa) were calculated for both phases. The effect of chemical pressure on the BaF2 crystal was studied by simulating Ba1?x MexF2 mixed crystals (Me=Ca, Sr). It was shown that at impurity concentrations up to 15–20 at. % the lattice constant varies in the same way as it does when hydrostatic pressure increases to P c , which corresponds to a phase transition to the orthorhombic phase. The effect of chemical and hydrostatic pressure on BaF2: Eu2+ doped crystals was also studied. The dependence of the absorption and luminescence zero-phonon line shift on the Eu2+-ligand distance was calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号