首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Non》2007,353(13-15):1402-1406
Fluorophosphate glasses of composition P2O5–K2O–MgO–Al2O3–AlF3 and P2O5–K2O–MgO–Al2O3–BaF2 were prepared with different Nd3+ ion concentrations. The absorption and emission spectra in the UV–VIS–NIR region were measured for these glasses. Judd–Ofelt analysis has been carried out using the absorption spectra of 1.0 mol% Nd3+-doped glasses to evaluate the radiative properties for some luminescent levels of the Nd3+ ion. The stimulated emission cross-sections of the 4F3/2  4I11/2 laser transition for the present glasses are found to be higher than for other Nd3+-doped glasses. Branching ratio calculations also revealed the potentiality of the 4F3/2  4I11/2 transition for laser action in these glasses. The observed concentration quenching of the lifetime of the 4F3/2 level is explained as a result of cross-relaxation process between the Nd3+ ions.  相似文献   

2.
Energy-transfer excited upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped PbGeO3–PbF2–CdF2 glass and glass–ceramic under infrared excitation is investigated. In Ho3+/Yb3+-codoped samples, green (545 nm), red (652 nm), and near-infrared (754 nm) upconversion emission corresponding to the 5S2(5F4)  5I8, 5F5  5I8, and 5S2(5F4)  5I7 transitions, respectively, was observed. Blue (490 nm) emission assigned to the 5F2,3  5I8 transition was also detected. In the Tb3+/Yb3+-codoped system, bright UV–visible emission around 384, 415, 438, 473–490, 545, 587, and 623 nm, identified as due to the 5D3(5G6)  7FJ(J = 6, 5, 4) and 5D4  7FJ(J = 6, 5, 4, 3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicated that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed.  相似文献   

3.
《Journal of Non》2007,353(13-15):1414-1417
Absorption, emission, excitation spectra and the lifetime of the 4S3/2 excited luminescent state of Er3+ ions in a fluorine containing (lead, lanthanum)–tellurite glass have been studied. The glass exhibits a strong green luminescence upon excitation through 380 nm (4I15/2  4G11/2) absorption band of its Er3+ ions. The spectrum consists of a strong green component in the wavelength range 534–553 nm due to luminescence transitions 2H11/2  4I15/2 and 4S3/2  4I15/2 and a very weak red component in the range 650–710 nm due to 4F9/2  4I15/2 transition. The Stark split components of the 4S3/2 state are not very clear in the spectrum, but the biexponential luminescence decay of the 4S3/2 state confirms the presence of the Stark levels. A rapid conversion of the upper Stark level to the lower level is also evident from the decay kinetics which helps greater number of ions to populate in the lower stark level of the 4S3/2 state. Thus, the present study indicates that the glass may be a suitable candidate for use as a laser medium in making a solid state green laser by pumping the later by normal route.  相似文献   

4.
Congruent Er3+(3 mol%):LiNbO3 crystals codoped with ZnO (X mol %, X=0, 3, 6 and 7) were grown by the Czochralski technique. The Er contents in the crystals were measured by an inductively coupled plasma atomic emission spectrometer (ICP‐AES). Under 800 nm excitation, the upconversion emission spectra reveal an enhancement of the green emission with respect to the red emission when the Zn2+ ions are introduced into Er:LiNbO3 crystal. The effect of Zn2+ ions concentration on the intensity ratio of the green to red emission has been investigated. Two cross‐relaxation processes (2H11/2 + 4I13/24I11/2 + 4F9/2 and 4F7/2 + 4I11/24F9/2 + 4F9/2) are involved in populating the 4F9/2 state, which bypass the green‐emitting states. The OH absorption spectra indicate that the Zn2+ codoping leads to a decreased concentration of Er3+ cluster sites contributing to the enhancement of the green emission. The studies on UV‐vis absorption spectra show that the heavily codoped with Zn2+ results in the reformation of the Er3+ cluster sites in Er:LiNbO3. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The effect of Yb3+ concentration on the fluorescence of 12CaO·7 Al2O3:Ho3+/Yb3+ polycrystals is investigated. The Raman spectra of pure C12A7 under 633‐nm excitation show that the highest photon energy is 787.267 cm−1, which is not much bigger than general fluorides, so it can realize high efficiency upconversion. The upconversion emission spectra suggest that the green upconversion emission centered at 548 nm and the red upconversion emission at 662 nm correspond to the 5F4/5S25I8 and 5F55I8 transition of Ho3+ ions, respectively. The intensity of the upconversion luminescence and the ratio of red to green are changed with Yb3+ ion concentration. The pump dependence and luminescence decay dynamics spectra show the green and red upconversion emissions are populated by a two‐photon process, and the upconversion mechanisms are analyzed. The relative luminous efficiencies of green and red emissions are 2.035% and 0.7%, respectively. The normalized efficiency obtained for green emission of Ho3+ at RT when the sample is excited by 980‐nm light with an absorbed intensity of 7.5 W/cm2 is 0.27 cm2/W. This result is comparable to the values obtained in YF3 for the Yb3+, Er3+ green emission. The C12A7 with upconversion red and green light will be a promising luminous material.  相似文献   

6.
Optical absorption and photoluminescence studies have been carried out at room temperature in 25 R2O-25 GeO2-49.5 B2O3-0.5 Nd2O3 glass systems, (Composition in mol%, R = Li, Na, K and Rb). Judd Ofelt Intensity parameters and other parameters like Racah (E1, E2 and E3), Slater-Condon-Shortley (F2, F4 and F6) Spin-Orbit Coupling (ξ4f) and Configuration Interaction (α,β and γ) for Nd3+ ion in the glass system are calculated. The variation of the Ω2 parameters are interpreted in terms of the covalency of the RE ion in the glass matrix. Further the hypersensitive transition 4I9/2 → 4 G5/2, 2 G7/2 is analyzed with respect to the intensity ratio IL/IS and is found to be dependent on the type of alkali in the glass matrix. The Photoluminescence studies do not show any appreciable shift in the peak emission wavelength of the 4 F3/2 to 4I11/2 transition with the change in alkali type.  相似文献   

7.
Z.G. Ivanova  J. Zavadil  K.S.R.K. Rao 《Journal of Non》2011,357(11-13):2443-2446
The influence of temperature and glass composition on the photoluminescence (PL) efficiency of Er3+ ions embedded in (GeS2)100?x(Ga2S3)x (x = 20, 25 and 33 mol%) glasses has been studied. The typical 4f–4f emission bands of Er3+ ions at around 830, 1000 and 1550 nm have been observed in the whole investigated temperature range from 300 K down to 10 K for all the compositions. New 4f–4f luminescence bands, in excess of the three basic ones, have been observed at 670, 870, 1120, 1260 and 1350 nm for (GeS2)75(Ga2S3)25 glass composition, and are tentatively assigned to 2H9/2  4I11/2, 4G11/2  4F9/2, 2H11/2  4I11/2, 4F7/2  4I9/2 and 4F3/2  4I9/2 transitions, respectively. Thus a considerable influence of GeGaS host composition on the efficiency of 4f–4f transitions of embedded Er3+ ions is documented with the outcome that (GeS2)75Ga2S3)25 composition appears near optimal for the emission efficiency of Er3+ ions. With decreasing temperature the PL efficiency is enhanced considerably with pronounced narrowing of all bands. In the case of the strongest PL band at ~ 1550 nm, corresponding to 4I13/2  4I15/2 transition, the narrowing at low temperature is further accompanied by the resolution of well pronounced fine structure due to “crystal field” splitting of corresponding electronic terms. The relationship between the photoluminescence and reflectance spectra as a function of Er content has been discussed.  相似文献   

8.
A high optical quality erbium doped Lu2SiO5 single crystal has been grown by the Czochralski method. The distribution coefficient of Er3+ was measured to be ∼0.926. The absorption and emission spectra as well as the fluorescence decay curve of the excited state 4I13/2 were measured at room temperature. The spectroscopic parameters were calculated using the Judd–Ofelt theory, and the J–O parameters Ω2, Ω4 and Ω6 were found to be 4.451×10-20, 1.614×10-20 and 1.158×10-20 cm2, respectively. The room-temperature fluorescence lifetime of the Er3+4I13/24I15/2 transition was measured to be 7.74 ms. The absorption and emission cross-section as well as the gain cross-section in the eye-safe regime of 1400–1700 nm were also determined and discussed.  相似文献   

9.
We measured the 1.5 μm emission spectra corresponding to 4I13/2 → 4I15/2 transition of Er3+ in borosilicate glass within the temperature range from 11 to 300 K. The spectral components emitting from the lowest and upper Stark levels of 4I13/2 state were distinguished by analyzing the spectra with normalized area. The effect of optical properties of the spectral components on the 1.5 μm emission bandwidth is investigated. The results indicate that to search for a host with higher spontaneous emission probability of the upper Stark levels of 4I13/2 state for Er3+ ions is very important to broadening of the 1.5 μm emission band. An equivalent model of four-level system is presented and applied to explain the spectral shape and temperature characteristics of the 1.5 μm emission band.  相似文献   

10.
Upconversion luminescence in erbium-doped PbGeO3-PbF2-CdF2-based vitroceramic under 1540 nm infrared excitation is investigated. Luminescence signals around 410, 525, 550, 660 and 850 nm were generated and attributed to the 2H9/2, 2H11/2, 4S3/2 and 4F9/2 transitions to the 4I15/2 ground-state, and 4S3/2-4I13/2, respectively. The erbium ions excited-state emitting levels were populated through a combination of stepwise ground-state absorption, phonon-assisted excited-state absorption and cross-relaxation processes. The results also disclosed that all emission signals obtained with vitroceramic samples presented intensities three times higher when compared to the precursor glass samples. In addition, the red emission signal at 660 nm for 1540 nm pumping exhibited an expressively high intensity when compared to the green signal.  相似文献   

11.
Efficient infrared emissions at 1.20 μm [5I6  5I8 transition] and 1.38 μm [(5 F4, 5 S2)  5I5 transition] from Ho3+-doped lithium–barium–bismuth–lead (LBBP) glass were observed. The stimulated emission cross-sections were calculated to be 0.29 × 10?20 and 0.25 × 10?20 cm2 for 1.20 and 1.38 μm emissions, respectively. Judd-Ofelt characteristic parameters Ω2, Ω4 and Ω6 for Ho3+ in LBBP glass were calculated to be 6.72 × 10?20, 2.35 × 10?20 and 0.61 × 10?20 cm2, respectively, which indicates a strong asymmetry and a covalent environment between the Ho3+ ions and the ligands in this glass. The optical amplifications operating at these relatively unexplored wavelength regions were evaluated and discussed.  相似文献   

12.
Erbium doped chalcogenide glasses are of great interest in the integrated optoelectronic technology due to their Er3+ intra-4f emission at the standard telecommunication wavelength of 1.54 μm. In this paper, the photoluminescence (PL) of a series of (GeS2)x(Ga2S3)100−x (x = 75 and 67) glasses doped with high amounts of Er2S3 (1.8, 2.1, 2.4 and 2.7 mol%) under excitation with 1064 nm light has been studied. A quenching PL effect at 1.22 аt.% Er-doped (GeS2)75(Ga2S3)25 and 1.39 аt.% Er-doped (GeS2)67(Ga2S3)33 glasses has been established. The relative changes in PL line-shape at around 1540 nm have been estimated by deconvoluting the spectra to Gaussian sub-bands centered at 1519 ± 1, 1537 ± 1, 1546 ± 1, 1555 ± 1 and 1566 ± 4 nm, which correspond to F21, F11, F22, F12 and F13 transitions in the 4I13/2 and 4I15/2 energy levels and have intensity and manifestation that are strongly depend on the Er-doping level. The influence of gallium on the PL efficiency has been evaluated with a view to enhanced emission cross-section.  相似文献   

13.
《Journal of Non》2007,353(13-15):1392-1396
A systematic study of the optical absorption and luminescence spectra of Er3+-doped alkali fluorophosphate glasses (RTFP) 50(NaPO3)–10TeO2–20AlF3–19RF–1Er2O3 (R = Li, Na and K) has been performed. The phenomenological Judd–Ofelt intensity parameters have been determined from the spectral intensities of the absorption bands in order to calculate the radiative transition probabilities, radiative lifetimes and branching ratios for various excited luminescent states. Using the visible and near infrared emission spectra, full width at half maximum (FWHM), emission cross-sections (σe) and figure of merit (FOM) were evaluated and compared with other hosts. Especially, the numerical values of these parameters indicate that the emission transition 4I13/2  4I15/2 transition at 1.534 μm in Er3+-doped fluorophosphate glasses may be highly useful in optical communication. The decay characteristic of 4S3/2 excited level has also been recorded and analyzed. The calculated and experimental lifetimes were compared in terms of quantum efficiencies and multiphonon relaxation rates.  相似文献   

14.
The BaY2F8 crystals doped with different concentrations of Tm3+ ions were prepared by the temperature gradient technique (TGT). X‐ray powder diffraction was applied to analyze the phase. The cracking phenomenon along (010) and (100) planes of the crystals grown by temperature gradient technique was studied on the basis of the structure of BaY2F8 crystals. The absorption spectra were measured and investigated in the ultraviolet‐visible and near‐infrared ranges at room temperature. Several characteristic absorption bands of Tm3+‐doped BaY2F8 crystal were observed. The emission and excitation spectra were obtained and investigated at room temperature and 12 K, showing the characteristic emission peaks of Tm3+ ions. The temperature dependence of Photoluminescence curve was also investigated in the range of 12–296 K. The luminescence intensity of emission bands decreased with increasing temperature, while the effective bandwidth increased. The up‐conversion spectrum excited at 650 nm was recorded and up‐conversion mechanism was analyzed in detail. The result showed the purple, green and yellow emissions corresponding to 3P13F3, 1D23H5 and 3P01G4 transitions, respectively.  相似文献   

15.
Bi–Er–Tm co-doped germanate glasses and Bi, Er, Tm singly doped glasses were prepared and characterized through absorption spectra, NIR emission spectra and decay lifetime. A super broadband near-infrared emission from 1000 nm to 1600 nm, covering the whole O, E, S, C, and L bands, was observed in the Bi–Er–Tm co-doped samples due to the result of the overlapping of the Bi related emission band (centered at 1300 nm), the emission from Er3+ 4I13/2  4I15/2 transition (centered at 1534 nm) as well as the emission from Tm3+ 3H4  3F4 transition (centered at 1440 nm), which is essential for broadly tunable laser sources and broadband optical amplifiers. The energy transfer process was also discussed at the end of the paper.  相似文献   

16.
《Journal of Non》2007,353(13-15):1377-1382
Near infrared (NIR) to visible upconversions of a fluorophosphate glass of composition (mol%) 7Ba(PO3)2–32AlF3–30CaF2–18SrF2–13MgF2 doped with various concentrations (0.1, 0.3 and 1.0 mol%) of Ho2O3 have been investigated by exciting at 892 nm at room temperature. Three upconverted bands originated from the 5F3  5I8, (5S2, 5F4)  5I8 and 5F5  5I8 transitions have been found to center at 491 nm (blue), 543 nm (green) and 658 nm (red), respectively. These bands have been justified from the evaluation of the absorption, normal (down conversion) fluorescence and excitation spectra. The upconversion processes have been interpreted by the excited state absorption (ESA), energy transfer (ET) and cross relaxation (CR) mechanisms involving population of the metastable (storage) energy levels by multiphonon deexcitation effect. It is evident from the infrared reflection spectral (IRRS) analysis that the upconversion phenomena are expedited by the low multiphonon relaxation rate in fluorophophate glasses owing to their high intense low phonon energy of ∼600 cm−1 which is very close to that of fluoride glasses (500–600 cm−1).  相似文献   

17.
《Journal of Non》2007,353(13-15):1383-1387
The spectroscopic properties of Er3+-doped alkali tellurite TeO2–Na2O glasses are investigated. Infrared-to-visible upconversion emission bands are observed at 410, 525, 550 and 658 nm using 797 nm excitation wavelength. These bands are assigned to the 2H9/2  4I15/2, 2H11/2  4I15/2, 4S3/2  4I15/2 and 4F9/2  4I15/2 transition, respectively. The power dependence study reveals that the 2H9/2  4I15/2 transition involves a three-step process while the other upconversion transitions involve only two steps. An excitation with 532 nm wavelength, two upconversion bands are observed in the UV region at 380 and 404 nm in addition to bands in the visible region at 410, 475, 525, 550, 658 and 843 nm. These bands are ascribed to 4G11/2  4I15/2, 2P3/2  4I13/2, 2H9/2  4I15/2, 2P3/2  4I11/2, 2H11/2  4I15/2, 4S3/2  4I15/2, 4F9/2  4I15/2 and 4S3/2  4I13/2 transition, respectively. Increasing Er3+ concentration leads to a rapid growth in the intensity of red emission relative to that for the green emission. An explanation for this observation has been suggested. The temperature dependence profile for the two thermally coupled levels (2H11/2, 4S3/2) shows that they can be used for measuring the temperature.  相似文献   

18.
《Journal of Non》2006,352(23-25):2420-2424
Ge30Ga4S65.5:Er0.5 glasses with stoichiometric composition have been prepared using a conventional melt-quenching technique. The PL lifetime distribution corresponding to 4I13/2  4I15/2 transition in Er3+ ion has been measured experimentally using quadrature frequency-resolved PL spectroscopy (QFRS) from 2 ns to 160 s at room temperature and at 3.7 K. The distribution seems to be principally single-peaked at around τQFRS  3–4 ms with a half width <3 ms irrespective of PL energy and temperature. The Judd–Ofelt analysis based on optical transitions from 4I15/2 level to 4I13/2, 4I11/2, 4I9/2, 4F9/2, 4S3/2, 2H11/2 and 4F7/2 levels in Er3+ ions gives the radiative lifetime of 4I13/2  4I15/2 transition τJO  2.6 ms. The closeness of τJO and τQFRS implies the dominant role of the radiative relaxation in 4I13/2  4I15/2 transitions. The shape of steady-state PL spectra can be predicted by using a modified McCumber theory taking into account the possibility of absorption and re-emission of PL quanta in heavily doped materials under weak excitation. The latter calculations used Monte Carlo simulations taking into account the re-absorption and re-emission of the PL radiation. The non-radiative lifetime for the 4I13/2  4I15/2 transition has been estimated to be more than 100 times larger than the radiative lifetime.  相似文献   

19.
A series of neodymium complexes Nd(TTA)3Lx (where TTA = α-thenoyltrifluoroacetonato, Lx (x = 1–5) = H2O, triophenylphosphine oxide (Tppo), 2,2-bipyridine (Bipy), 1,10-phenanthroline (Phen) and 2- (N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (Dpbt) were synthesized and incorporated in poly(methyl methacrylate). Their absorption spectra were measured and analyzed using Judd–Ofelt theory. Near-infrared luminescent spectra were studied and the radiative properties have been stimulated. Laser parameters such as effective bandwidths (Δλeff), stimulated emission cross-sections (σe), and gain bandwidth (σg) had also been calculated and compared with other systems. The effect on the fluorescence branching ratio (β) in the 4F3/24I11/2 transition of different synergistic ligands had been investigated and the relation between β and Judd–Ofelt parameter Ω2, Ω4, Ω6 was discussed. In conclusion, among the five neodymium complexes, Nd(TTA)3Dpbt has the largest Ω2 parameter (33.72 × 10? 20 cm2), stimulated emission cross-sections, which is found promising to be a candidate for laser materials in further application.  相似文献   

20.
In this paper we investigate the energy transfer processes in Tm3+/Er3+ doped telluride glass pumped at the commercial diode laser pump wavelength ∼800 nm. Tailoring the rare-earths content in the glass matrix, seven main energy transfer channels within the doping range considered were identified. A 6-fold enhancement of the Er3+ visible frequency upconversion fluorescence at ∼660 nm is observed due to the inclusion of Tm3+ ions. This is evidence of the relevant contribution of the route Er1(4I11/2) + Er2(4I13/2) → Er1(4I15/2) + Er2(4F9/2) to the process. Energy migration among pumped 4I9/2 level reducing the efficiency of the upconversion emission rate (3H11/2, 4S3/2, and 4F9/2) is observed for Er3+ above 1.5 wt%. The rate equations regarding the observed energy transfer routes are determined and a qualitative analysis of the observed processes is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号