首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The specular reflectivity of CdCr2Se4 single crystals has been measured within the spectral energy interval E = 0.5 ? 12.0 eV at room temperature. The spectral dependence of the real and imaginary part of the dielectric constant has been obtained from a Kramers-Kronig analysis of the experimental data. The observed optical transitions and the origin of the red-shifting band are discussed with respect to the semiempirical ionic model of the spinel structure, based on the recently reported increase of the structure parameter u of the spinel during cooling (Göbel, J. Magn. Magn. Mat. 3 (1976) 143). Contradicting results of the optical measurements in the region of the red-shifting edge may be attributed to the sensitivity of the parameter u on the internal stress.  相似文献   

2.
The polarization-modulated (PM) magnetoreflection technique has been used to study magnetic ordering effects in CdCr2S4 and EuSe. The energy gap for direct band-band transitions in CdCr2S4 has been measured to be EG = 2.3 eV, and the exchange splitting of the valence band to be about 0.03 eV. Good agreement with thin film absorption measurements is obtained in the temperature dependence of spectral structure, observed at energies less than EG, associated with crystal field and charge transfer transitions. No strongly blue-shifting peak is observed with magnetic order. PM magnetoreflection spectra of the E1 peak of EuSe show a direct manifestation of the spin alignment from the ferrimagnetic to ferromagnetic state of this crystal at 2 K in external fields up to 16 kOe. An attempt is made to explain resonant Raman scattering in EuSe (observed by other workers) in terms of the field-induced shift of one of the polarized E1 reflectivity components into coincidence with the 5145 Å argon-ion laser line.  相似文献   

3.
The fundamental optical properties in the paramagnetic phase of α-RuCl3 are studied at different temperatures in the photon energy interval 0.03 to 10 eV. Infrared reflectivity spectra show a transverse optical frequency at 0.038 eV (32 μm) for an Eu mode (Ec, in plane atomic displacements). The absorption spectra in the energy range 0.2 to 1 eV reveal three bands (0.29, 0.51, 0.71 eV) attributed to d-d electronic transitions. Reflectance and thermo-reflectance measurements indicate the onset of the charge-transfer transitions at 1.1 eV and show structure at 1.85, 2.55, 3.05, 4.5 eV. The marked reflectivity peak at 5.2 eV is probably related to p(Cl) → s(Ru) band-to-band transitions.  相似文献   

4.
The pressure shift of the optical absorption edge (dEg/dp = (1.1 ± 0.1) × 10?6 eV bar?1) and the compressibility (κ = (1.3 ± 0.) × 10?6 bar?1) of single crystalline CdCr2Se4 have been measured at ambient temperature. These data suggest an interpretation of the fundamental absorption in terms of either pp interband or p → localized d charge transfer transitions, but exclude excitations involving s-band states.  相似文献   

5.
Se85Te10Bi5 films of different thicknesses ranging from 126 to 512 nm have been prepared. Energy-dispersive X-ray (EDX) spectroscopy technique showed that films are nearly stoichiometric. X-ray diffraction (XRD) measurements have showed that the Se85Te10Bi5 films were amorphous. Electrical conduction activation energy (ΔEσ) for the obtained films is found to be 0.662 eV independent of thickness in the investigated range. Investigation of the current voltage (I-V) characteristics in amorphous Se85Te10Bi5 films reveals that it is typical for a memory switch. The switching voltage Vth increases with the increase of the thickness and decreases exponentially with temperature in the range from 298 to 383 K. The switching voltage activation energy (ε) calculated from the temperature dependence of Vth is found to be 0.325 eV. The switching phenomenon in amorphous Se85Te10Bi5 films is explained according to an electrothermal model for the switching process. The optical constants, the refractive index (n) and the absorption index (k) have been determined from transmittance (T) and reflectance (R) of Se85Te10Bi5 films. Allowed non-direct transitions with an optical energy gap (Egopt) of 1.33 eV have been obtained. ΔEσ is almost half the obtained value of Egopt, which suggested band to band conduction as indicated by Davis and Mott.  相似文献   

6.
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52 eV, respectively. The rate of change of the indirect band gap with temperature dEgi/dT=-6.0×10−4 eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.44 eV. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.87 eV, 26.77 eV, 8.48×1013 m−2 and 2.55, respectively.  相似文献   

7.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K.  相似文献   

8.
The thermodynamic properties of the spinel ferromagnetic compounds CdCr2Se4 and CdCr2S4 have been investigated by making heat capacity and thermal expansion measurements on single crystals. For both compounds, the ferromagnetic transition is marked by λ-type thermal anomalies, and the results provide a pressure dependence of the transition temperatures that is in agreement with direct measurements. Below the transition, CdCr2S4 shows an anomalous heat-capacity contribution and negative thermal expansion, which are in contrast to the conventional behavior found in CdCr2Se4.  相似文献   

9.
Near infrared absorption spectra of n-type CuIn5S8 single crystals were measured. Two structures were found in the spectra in the photon energy range from ?ω ? 0.3 eV?1.2 eV. One of them is the free carrier absorption below 0.6 eV in which the absorption coefficient increases as the third power of the wavelength. It was found that this absorption was associated with the multiple scattering mechanisms. Another structure seems, from its temperature and carrier-concentration dependences, to be associated with an absorption due to a transition from a lower lying conduction band to an upper one.  相似文献   

10.
Electron energy loss spectra of metallic erbium, Er under different exposures of oxygen at room temperature, and Er deposited in an atmosphere of H2 are presented in both N(E) and dNdE form for primary energies in the range 100–1000 eV. Resonant excitations associated with the 5p and 4d levels in Er show little environmental dependence, and are largely intraatomic in character. In contrast the main plasmon peak shifts to higher energy on exposure to oxygen or hydrogen, and the spectrum of one electron excitations at low energies alters with a decrease in metal losses around 3.5 eV accompanied by a build up of valence band transitions at 8–9 eV. There is no evidence of a stable chemisorption phase under oxygen exposure, but the results are consistent with rapid oxygen incorporation into subsurface layers and oxide formation.  相似文献   

11.
The effect of γ-radiation dose on the optical spectra and optical energy gap (Eopt.) of Se76Te15Sb9 thin films was studied. The dependence of the absorption coefficient (α) on the photon energy () was determined as a function of radiation dose. The films show indirect allowed interband transition that is influenced by the radiation dose. Both the optical energy gap and the absorption coefficient were found to be dose dependent. The indirect optical energy gap was found to decrease from 1.257 to 0.664 eV with increasing the radiation dose from 10 to 250 krad, respectively. The results can be discussed on the basis of γ-irradiation-induced defects in the film. The width of the tail of localized states in the band gap (Ee) was evaluated using the Urbach edge method. The refractive index (n) was determined from the analysis of the transmittance and reflectance data. Analysis of the refractive index yields the values of high frequency dielectric constant (ε) and the carrier concentration (N/m*). The dependence of refractive index on the radiation dose has also been discussed. Other optical parameters such as real and imaginary parts of the dielectric constant (ε1, ε2) and the extinction coefficient (k) have been evaluated. It was found that the spectral absorption coefficient is expected to a suitable control parameter of γ-irradiation-sensitive elements of dosimetric systems for high energy ionizing radiation (0.06-1.33 MeV).  相似文献   

12.
The scattering cross section of the Raman-active phonons at 156 cm?1 (Eg) and 169 cm?1 (F2g) in the ferromagnetic semiconductor CdCr2Se4 (Tc=130 K) has been measured as a function of incident photon energy between 1.55 and 2.81 eV, both in the ferromagnetic and paramagnetic phases. The resonance curve peaks sharply near 2 eV and shows a broadening for temperatures below the Curie point. The relative line intensities change significantly with photon energy. The results show that the concept of spin-dependent Raman scattering in the ferromagnetic spinels has to be revised in terms of exchange-splitting-induced resonant Raman scattering.  相似文献   

13.
CuAlCO2 is a p-type semiconductor with an average hole mobility of 1.1 × 10?7m2Vs. From photoelectrochemical measurements its bandgap is found to be indirect allowed at 1.65 eV; other interband transitions are at 2.3 and 3.5 eV. The valence band is made up mainly from Cu-3d wave functions and lies 5.2 eV below the vacuum level.  相似文献   

14.
İ. Guler  N.M. Gasanly 《哲学杂志》2013,93(13):1799-1806
The optical properties of Tl2In2Se3S layered single crystals have been analyzed using transmission and reflection measurements in the wavelength region between 500 and 1100 nm. The optical indirect transitions with a band gap energy of 1.96 eV and direct transitions with a band gap energy of 2.16 eV were determined from analysis of absorption data at room temperature. Dispersion of the refractive index is discussed in terms of the Wemple–DiDomenico single-effective-oscillator model. The refractive index dispersion parameters – oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index – were found to be 4.67 eV, 45.35 eV, 1.38 × 1014 m ? 2 and 3.27, respectively. Transmission measurements were also performed in the temperature range 10–300 K. As a result of temperature-dependent transmission measurements, the rate of change in the indirect band gap with temperature, i.e. γ = ?5.6 × 10?4 eV/K, and the absolute zero value of the band gap energy, E gi(0) = 2.09 eV, were obtained.  相似文献   

15.
We present measurements of the critical behaviour of the EPR linewidths at frequencies 9.21 and 35.5 GHz. In the exchange critical region above Tc (4πx ? 1) the strong field dependence of the linewidths is observed, even when the field variation of susceptibility x is small. This phenomenon is explained by the spin diffusion effect on the linewidth. The spin diffusion coefficients D for CdCr2Se4 and CdCr2S4 are determined from the linewidths data. The temperature dependence D is found to be consistent with the predictions of the dynamical scaling theory.  相似文献   

16.
Reflectivity measurements in fundamental absorption range (3.6–13 eV) have been made on Sn(Se1-xSx)2 mixed compounds for several compositions (x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0). The composition dependence of the energy location of the reflectivity structures is found to be non-linear and different according to the electronic transitions involved. This behaviour is discussed in terms of electronic structure evolution related to the anion substitution.  相似文献   

17.
The absorption edge of undoped Tl2Ga2S3Se crystals have been studied through transmission and reflection measurements in the wavelength range 440–1100 nm and in the temperature range 10–300 K. The absorption edge was observed to shift toward lower energy values with increasing temperature. As a result, the rate of the indirect band gap variation with temperature γ=−2.6×10−4 eV/K and the absolute zero value of the band gap energy Egi(0)=2.42 eV were obtained.  相似文献   

18.
Variable angle spectroscopic ellipsometry has been applied to characterize the optical constants of bulk Cu(In0.7Ga0.3)5Se8 and Cu(In0.4Ga0.6)5Se8 crystals grown by the Bridgman method. The spectra were measured at room temperature over the energy range 0.8-4.4 eV. Adachi’s model was used to calculate the dielectric functions as well as the spectral dependence of complex refractive index, absorption coefficient, and normal-incidence reflectivity. The calculated data are in good agreement with the experimental ones over the entire range of photon energies. The parameters such as strength, threshold energy, and broadening, corresponding to the E0, E1A, and E1B interband transitions, have been determined using the simulated annealing algorithm.  相似文献   

19.
Absorption measurements were made on single crystals of Zn3P2 at temperatures of 300, 80 and 5 K, and photo-voltage spectral responses-were measured at 300 K for Au- and In---Zn3P2 contacts. Interband absorption was interpreted as a process involving three mechanisms: (1) indirect transitions from the valence band at the Γ point, (2) either excitations from acceptor level to the conduction band at the Γ point, or second indirect transitions associated with the creation of excitons, and (3) band-to-band direct transitions at the Γ point. The effect of the lighting configuration on spectral PV plots is also discussed, and the origin of two peaks of PV responses is interpreted as being in accordance with optical data. The indirect energy gap has been estimated as 1.315eV at 300 K and 1.335 eV at 80 and 5 K, and the direct one as 1.505, 1.645 and 1.685 eV at 300, 80 and 5 K, respectively.  相似文献   

20.
The temperature dependence, injection level dependence, and modulation frequency response of cathodoluminescence have been measured in Te-rich CdTe:In for materials with In concentrations ranging from 3 × 1015cm?3 to 1 × 1018cm?3. In lightly-doped material, the 80 K luminescence shows sharp band-edge emission near 1.57 eV and a broad impurity-defect band near 1.4 eV. As temperature increases, the 1.4 eV band quenches out, leaving only the band-edge emission. In heavily-doped material, the band- edge emission is absent and the 80 K luminescence shows only the 1.4 eV band. As the temperature increases from 80 K to 300 K, the 1.4 eV band does not quench out but rather undergoes a complex evolution into a long tail on the band-edge emission which begins to appear at approximately 140 K. At a temperature of 200 K, where the luminescence of the heavily-doped material consists of a broad but structured band approximately 0.2 eV in width, frequency response measurements indicate that band-to-band transitions contribute to the high-energy part of the broad luminescence while the remainder of the band results from slower transitions. The frequency and temperature dependences suggest that the luminescence involves an impurity level that has merged with a band edge at an In concentration of 1 × 1018cm3. We interpret this behavior as suggesting that the 1.4 eV luminescence in Te-rich CdTe:In results from a partially-forbidden transition between conduction band and a deep acceptor level rather than from an intracenter type of transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号