首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optical absorption of CdInGaS4 single crystals has been measured over a hydrostatic pressure range up to 40 kbar in the 2.0–3.0 eV photon energy range at room temperature. The interband gap for the indirect allowed transition was found to have a pressure coefficient, dEg/dP, of +6.4 × 10-6ev/bar.  相似文献   

2.
The effect of pressure on the optical absorption edge of mixed crystals Cd1-xMnxTe with different manganese concentrations is reported. The observed absorption edge shifts to higher energy with increasing pressure at a rate of α=7?8×10?3 eV/kbar and a second order coefficient of β=-4×10?5 eV/kbar2 for x<0.5, to lower energy with increasing pressure at a rate of α=-5.0 ×10?3 eV/kbar for x?0.5. A phase transition occurs for all the samples studied. The absorption edge of the new phase is outside the wavenumber range of the instrument. The physical origins of different pressure coefficients are discussed in the light of the deformation potentials of energy band states and the hybridization of the Mn2+ 3d levels with the p-like states in the valence band.  相似文献   

3.
We present measurements of ZnO exciton peak energies, E0, at pressures up to 107.3 kbar. Smoke samples consisting of randomly oriented single crystal particles were prepared by oxidizing metallic zinc in air and were collected on one diamond face of a Merrill-Bassett pressure cell. Pressures were measured by the ruby fluorescence technique. In the pressure range between 5 and 90 kbar, our results indicate a consistent linear dependence with dE0/dP = 2.33 × 10?3 eV kbar?1 for both increasing and decreasing pressures. A mixed phase structure is suggested by the observed irregular peak shapes and measured pressure dependence for the sample that had been taken beyond ? 90 kbar where the transformation to the NaCl structure has been reported.  相似文献   

4.
Raman scattering and optical absorption in crystalline S4N4 have been measured both as a function of pressure at 295 K and low temperatures. Polarized single crystal Raman data were also obtained as an aid in the assignment of the Raman active phonons. The pressure coefficients of the Raman active external and S-S stretching modes show a discontinuity near 7 kbar indicative of a second order phase change. The optical absorption edge at about 2.5 eV of a sublimed film of S4N4 shows red shifts of 1.3 × 10?5 eV bar?1 and 6.3 × 10?4 eV K?1 with pressure and temperature respectively. In the light of these results, the electronic, vibrational and structural properties of the crystal are discussed.  相似文献   

5.
Optical absorption in MnIn2S4 single crystals has been studied. Direct and indirect optical transitions are found to occur at photon energies of 1.90?C2.16 eV in the temperature range of 80?C342 K. The temperature dependence of the band gap is determined; its temperature coefficients E gd and E gi are found to be ?4.84 × 10?4 and ?6.33 × 10?4 eV/K, respectively. The electron-phonon interaction is the main mechanism of the temperature shift of the intrinsic-absorption edge. MnIn2S4 single crystals exhibit anisotropy in polarized light at the absorption edge in the temperature range of 90?C190 K; the nature of this anisotropy is explained.  相似文献   

6.
Absorption spectra at 77° K near the direct (κ = 0) exciton transition are reported for deformed and undeformed single-crystal films of n-type Ge oriented on (111); Elliott's theory is applied. The optical width of the forbidden band for this transition is found as Eg 0 = (0.8821 ±±0.0002) eV, while the exciton binding energy is found as Eex(0) = = (0.0016±0.0003) eV for undeformed Ge at 77 ° K. The mean temperature coefficient of Eg for κ = 0 in the range 77 °–297 ° K is (dEg/ /dT)p =?3.50 · 10?4 eV/deg. The effects of thermoelastic deformation on the exciton spectrum give (dEg/dT)d = (?1.5±0.1) · 10?4 eV/deg. The half-width σ ≈ 5 · 10?4 eV of the exciton peak gives the exciton lifetime as gt ≥ 10?12 sec.  相似文献   

7.
The pressure dependence of the superconducting transition temperatureT c (p) of α-Zr has been investigated in both solid and liquid pressure transmitting media. Up to about 45 kbardT c /dp was measured to be + 3.5 × 10?6 K/bar. Cold working at 4.2 K produced a strong irreversible effect onT c . The superconductivity of the high pressure phase, ω-Zr, has been studied in its region of stability, i.e. above 60 kbar. For ω-Zr,dT c /dp=+7.7 × 10?6K/bar, andT c (0)=0.72 K (by extrapolation).  相似文献   

8.
9.
The transition temperature of TaSe3 is found to decrease for pressures up to 10 kbar at a rate -7.5 ± 0.3×10-5 °K/bar. This unusually large decrease can only be explained by both a pressure induced lattice stiffening and a decrease in the Fermi level density of states.  相似文献   

10.
The pressure shift of the optical absorption edge (dEg/dp = (1.1 ± 0.1) × 10?6 eV bar?1) and the compressibility (κ = (1.3 ± 0.) × 10?6 bar?1) of single crystalline CdCr2Se4 have been measured at ambient temperature. These data suggest an interpretation of the fundamental absorption in terms of either pp interband or p → localized d charge transfer transitions, but exclude excitations involving s-band states.  相似文献   

11.
The effect of hydrostatic pressure on the dielectric constant of the Nb-doped lead titanate ceramics was measured up to 60 kbar at room temperature. From the previously observed pressure dependence of lattice parameters and the present results, it is concluded that the tetragonality decreases linearly with a slope of ?7.6×10?4/kbar and that the pressure dependence of the tetragonal-cubic transition temperature is ?8.4K/kbar.  相似文献   

12.
Full-scale atomistic simulations by the nudged elastic band method are performed to determine the energetics and core structures of dislocations in a Ni lattice using an embedded-atom method potential. We find that for an edge dislocation, the potential yields very weak coupling between the partials which move almost individually. For a screw dislocation, the coupling between the partials is somewhat stronger and the partials move with some dependence. As expected, the results indicate that stacking fault energy has a controlling influence on the coupling behaviour of the partials. The effective Peierls energies and stresses are 1.30?×?10?6?eV/Å and 2.79?×?10?6?μ for the edge dislocation, and 1.62?×?10?4?eV/Å and 2.02?×?10?4?μ for the screw dislocation.  相似文献   

13.
A diamond anvil optical cell is employed to measure the pressure dependence of the fundamental indirect Γ-X transition of crystalline Si. The result is
E (eV) = (1.110 ± 0.002) ? (1.41 ± 0.06) × 10?3P
where the pressure P is in kbar. Between 115 and 126 a transformation takes place to a phase opaque to electromagnetic radiation of wavelength between 0.3 and 2.0 μm. We believe this is the same phase transition reported by Minomura and Drickamer. A pseudopotential calculation assuming a relatively soft core is carried out and its results are in rather good agreement with experiment.  相似文献   

14.
The long wavelength tail of the fundamental absorption in NaClO3 and KClO3 crystals has been analysed based on the theory of band to band transitions of Bardeen et al.[8] developed in the case of semi-conducting crystals. Evidence of phonon involvement in the transitions giving an indirect band gap is observed. The energies of the phonons involved in the process are the same for both the crystals, and agree well with combinations of prinicple frequencies of ClO3? ion, their overtones and also lattice phonons. The indirect band gap in these crystals varies with temperature more or less linearly and the rate of variation is ?3·8 × 10?4 eV/K and ?5·0 × 10?4 eV/K for sodium chlorate and potassium chlorate respectively.  相似文献   

15.
Optical absorption in single crystals of tin sulfide has been studied at many temperatures between 100 and 300 °K, in the wavelength range 2·2–0·8 μ. From the interference fringe patterns the absorption coefficient, reflection coefficient and index of refraction as a function of wavelength were determined for two light polarizations (εa and εb). From an analysis of the data, indirect band gaps of 1·142 and 1·095 eV were found for the two directions of polarization. Also it was found that the phonon assisted transitions required the participation of two phonons at different energy thresholds with energies 0·033 or 0·038 eV and 0·082 or 0·113 eV, with reference to the two axis. The temperature dependence of the indirect band gap for each direction of light polarization is linear with a slope ?4·05 × 10?3eV and ?4·37 × 10?3 eV respectively.  相似文献   

16.
We report the theoretical interpretation of the magnetization and the magnetocrystalline anisotropy of ferromagnetic DyAl2 single crystals between 4.2 and 60 K and magnetic fields up to 15 T. Good agreement between theory and experiment is obtained by using three temperature independent parameters: the two crystal field parameters B4 = (?0.50 ± 0.05) × 10?4 meV, B6 = ? (0.51 ± 0.05) × 10?6 meV and the Curie temperature Tc = (62 ± 2) K.  相似文献   

17.
单伟  沈学础  赵敏光  朱浩荣 《物理学报》1986,35(10):1290-1298
本文研究了室温下1—40kbar流体静压力范围内三元化合物半磁半导体Cd1-xMnxTe光吸收边的压力效应。实验结果给出:x<0.5的样品,吸收边随压力增加向高能方向以α=6—8×10-3eV/kbar的速率漂移,并具有10-5/kbar2量级的二级非线性系数;x≥0.5的样品,表观吸收边随压力增加向低能方向漂移,压力系数为α-5×10-3eV/kbar。高压下所研究的样品均有一从闪锌矿结构到NaCl结构的相变发生。这一相变可以是不可逆的,相变压力与样品组分有关,大致在25—40kbar范围内。根据半导体能带畸变势效应和晶体场理论模型估计了压力系数的理论值,讨论了不同压力系数的物理原因。 关键词:  相似文献   

18.
The temperature dependence of spectral distribution of photoconductivity was measured on evaporated polycrystalline layers of lead-selenide in the range from 80 to 300 °K. The method ofBardeen, Blatt andHall was used, to calculate the band gap for direct and indirect transitions. A linear positive temperature coefficient was obtained for both transitions. The values areβ dir=+(4.5±0.2) · 10?4 eV/°K andβ ind=+(3.0±0.2)· 10?4eV/°K.  相似文献   

19.
Mean sticking times of helium on a glass surface are determined at very low pressures from nonstationary molecular flow through glass capillaries. The temperature range covered is 13.8 °K to 20.4 °K. Resulting sticking times are of the order of 10?7 to 10?5 sec. They show a characteristic dependence on temperature and pressure. These measurements can be interpreted by means of a simple model: He-atoms mostly are bound to the surface with an adsorption energyE of 229 cal/mol?0.01 eV (±20%). However with a probability of 10?4 the energy is 530 cal/mol?0.023 eV (±6%). In both cases sticking times τ follow the equation τ=τ0exp(E/RT) where τ0 is about 10?9 to 10?10 sec.  相似文献   

20.
The change of resistivity of the 2.3 MeV-electron-irradiated bulk n- and p-GaAs have been measured at hydrostatic pressure up to 5 kbar at RT. Corrections for the changes in free electron and hole mobilities with pressure have been neglected. The resistivity changes are explained by a dependence on pressure of the ionisation energy of the radiation-induced E- and H-traps. The results indicate that most from these radiation- induced levels moves away from the conduction-band edge (γc-point) at a rate approximately (0.8?1.0)γG, here γG=11.6×10?6 eV bar?1 is the energy gap pressure coefficient for GaAs at RT. The high changes in ionization energies of E2 to E5-traps upon pressure are to be compared with the lower changes in ionization energies found for the deep-lying impurity levels. In accordance with the theoretical investigation it was suggested that most of the investigated radiation-induced levels in GaAs are t2-states of Ga- and As-vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号