首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
《Solid State Ionics》1986,20(3):169-184
The ionic conductivity of hot-pressed samples of undoped Y2O3 has been studied by the emf-method in atmospheres of controlled oxygen and water-vapor pressures. The variation in the ionic conductivity was studied as a function of time (7 months at 1200°C), temperature (600–1300°C), water-vapor pressure (3–1400 Pa), and oxygen pressure (10−10 −105 Pa). The overall conductivity can be divided into contributions from electronic carriers (mainly electron holes), native ionic defects, and hydrogen defects. The transport of charged hydrogen species is dominated by migration of “free” protons. The hydrogen-ion conductivity is detectable under all conditions and becomes the dominant ionic-conductivity contribution at high water-vapor pressures and low temperatures. The ionic contributions are discussed in terms of grain-boundary and bulk transport properties. Native-ion and proton-diffusion coefficients in yttria are estimated. Equations for the emf of oxide specimens containing charged hydrogen defects have been derived.  相似文献   

2.
Mixtures of AgI and PbI2 cooled from the melt result in the peritectic formation of a fast ion conducting phase centred about Ag4PbI6, which is face centred cubic with a = 6.33(5)A; this phase exhibits high electrical conductivity. On cooling to about 125°C, dissociation occurs to γAgI and PbI2, accompanied by the transient formation of another phase, centred about Ag2PbI4. A modified form of the T-x section of the equilibrium phase diagram at AgI concentrations greater than 60 mole % and below 300°C is proposed.  相似文献   

3.
T. Bak  J. Nowotny  C. C. Sorrell  M. F. Zhou 《Ionics》2004,10(5-6):334-342
The present work describes the electrical conductivity of undoped CaTiO3 in terms of the electrical conductivity components corresponding to electrons, electron holes and ionic charge carriers in the temperature range 973 K — 1323 K and under controlled oxygen partial pressure (10 Pa — 72 kPa). These data are considered in terms of the transference numbers of the respective charge carriers. It appears that the ionic conductivity component assumes maximum at the n-p transition when the ionic transfer number reaches 50% of the total conductivity value at 1323 K. The present study also includes the determination of the activation energy of the conductivity component related to ions (162.1 kJ/mol), electrons (134.2 kJ/mol) and electron holes (86.2 kJ/mol). The data obtained in this work indicate that undoped CaTiO3 exhibits a substantial level of ionic conduction that cannot be ignored in a quantitative analysis of electrical conductivity data.  相似文献   

4.
Mixtures of AgI and PbI2 form a phase stable at temperatures above 125°C with a substantial solid solubility about the composition 67% AgI, this phase exhibits a high electrical conductivity (~0.1S m-1). A proposal is made for the basic form of the AgI-PbI2 equilibrium diagram below 200°C, and comparison made to the systems AgI-ZnI2 and AgI-CdI2.  相似文献   

5.
CdS/CdSe co-sensitizers on TiO2 films were annealed using a two-step procedure; high temperature (300 °C) annealing of TiO2/CdS quantum dots (QDs), followed by low temperature (150 °C) annealing after the deposition of CdSe QDs on the TiO2/CdS. For comparison, two types of films were prepared; CdS/CdSe-assembled TiO2 films conventionally annealed at a single temperature (150 or 300 °C) and non-annealed films. The 300 °C-annealed TiO2/CdS/CdSe showed severe coalescence of CdSe QDs, leading to the blocked pores and hindered ion transport. The QD-sensitized solar cell (QD-SSC) with the 150 °C-annealed TiO2/CdS/CdSe exhibited better overall energy conversion efficiency than that with the non-annealed TiO2/CdS/CdSe because the CdSe QDs annealed at a suitable temperature (150 °C) provided better light absorption over long wavelengths without the hindered ion transport. The QD-SSC using the two-step annealed TiO2/CdS/CdSe increased the cell efficiency further, compared to the QD-SSC with the 150 °C-annealed TiO2/CdS/CdSe. This is because the 300 °C-annealed, highly crystalline CdS in the two-step annealed TiO2/CdS/CdSe improved electron transport through CdS, leading to a significantly hindered recombination rate.  相似文献   

6.
NASICON dense ceramics were obtained from solid state reaction between SiO2, Na3PO4·12H2O and two different types of zirconia: monoclinic ZrO2 and the yttria-doped tetragonal phase (ZrO2)0.97(Y2O3)0.03. Higher temperatures were needed to obtain dense samples of the yttrium free composition (1265 °C). The electrical conductivity, at room temperature, of the yttria-doped samples sintered at 1230 °C (0.20 S/m) is significantly higher than the value obtained with the material prepared from pure ZrO2. The impedance spectra show that the differences in conductivity are predominantly due to the higher grain boundary resistance of the undoped ceramics, probably due to formation of monoclinic zirconia and glassy phases along the grain boundary. Further improvement of the electrical conductivity could be achieved after optimization of the grain size and density of grain boundaries. A maximum conductivity value of about 0.27 S/m at room temperature was obtained with the yttria-doped samples sintered at 1220 °C for 40 h. Yttria-doped and undoped ceramics were tested as Na+ potentiometric sensors. The detection limit of the yttria-doped sample (10−4 mol/l) was one order of magnitude lower than the obtained with the undoped material. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16 – 22, 2001.  相似文献   

7.
《Solid State Ionics》1988,31(1):73-78
PbSnI4 has been prepared from equimolar amounts of PbI2 and SnI2. X-ray and DSC measurements show the material to be uniphase in the temperature range 30 to 400°C; it has a tetragonal structure and melts at 379°C. The electrical conductivity is mainly ionic with an ionic transport number greater than 0.99 at 200°C. Conductivity at room temperature is 2.56 × 10−8 Ω−1 cm−1 while the value at 200°C is 1.25 × 10−6 Ω−1 cm−1.  相似文献   

8.
《Solid State Ionics》2006,177(13-14):1129-1135
The conductivity of acceptor-doped LaNbO4 has been investigated in the temperature range 300 to 1200 °C as a function of the oxygen pressure and water vapor pressure by means of impedance spectroscopy and EMF measurements. The conductivity is predominantly ionic below 800 °C in air and for higher temperatures under reducing conditions. Protons are the major ionic charge carrier in the presence of water vapor. A maximum in proton conductivity of ∼ 0.001 S/cm was obtained at 950 °C in atmospheres containing ca 2% H2O. At high temperatures (> 1000 °C) under oxidizing conditions, electron hole conduction prevails. The conductivity has been modeled assuming that oxygen vacancies and protons compensate the acceptor doping. Transport coefficients describing mobility of defects and thermodynamic constants for the incorporation of protons have been derived.  相似文献   

9.
Study of ionic conductivity in AgI-PbI2 system has a function of composition and temperature shows that PbI2 has a definite role in the process of superionic phase transition. It has been found that at 80 mole % of AgI, superionic phase transition temperature passes through a minimum value of as low as 105°C. The maximum conductivity (at room temperature) is also obtained in this region. The results are discussed qualitatively in terms of a lattice loosening model.  相似文献   

10.
Taking oxygen ion conductor La2Mo2O9, as a base compound, a series of Sn-doped La2Mo2−x Sn x O9−δ, x = 0, 0.01, 0.02, 0.03, 0.05, 0.1, 0.15, 0.2 specimens were prepared and characterized by XRD for phase and crystal structure determination and ac impedance spectroscopy for ac and dc conductivity measurement. We have found that there is slight improvement in overall conductivity of the specimen with x = 0.03 at 800°C compared to the undoped compound at the same temperature. The value of conductivity when extrapolated to 800°C is found to be 0.055 S cm-1 for the specimen with x = 0.03, whereas conductivity of undoped specimen at the same temperature is found to be 0.033 Scm−1.  相似文献   

11.
《Solid State Ionics》2006,177(19-25):1785-1788
Bulk and grain boundary conductivities of Yb2+xTi2−xO7−x/2 (x = 0, 0.1, 0.18 and 0.29) materials were studied by impedance spectroscopy in the range 300–900 °C in air. Ionic and electronic conductivities were separated by both ion blocking Hebb–Wagner measurements and total conductivity measurements as a function of oxygen partial pressure in the temperature range 700–1000 °C. The oxygen partial pressure dependence of the total conductivity shows that these materials are nearly pure ionic conductors in air and that the ionic conductivity decreases for Yb-rich compositions. This was interpreted as a predominant effect of a decrease in mobility of ionic charge carriers, opposing the expected increase in concentration of oxygen vacancies with increasing Yb content. The studied materials become mixed conductors under typical fuel conditions, except possibly at temperatures below about 700 °C. Yb-excess slightly suppresses the electronic conductivity.  相似文献   

12.
PbI2 nanostructures were successfully prepared via a surfactant-assisted hydrothermal method at a low temperature of 100°C for 8 h. Polyvinyl pyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB) were used as surfactants. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–vis spectroscopy. It was found that the formation of PbI2 nanostructures with various morphologies could be well controlled by the adjustment of the pH of the synthesis solution, selection of suitable surfactant, and the amount of the desired surfactant. UV–vis absorption results showed an apparent shift of the band gap energy of the PbI2 nanoparticles relative to that of the bulk.  相似文献   

13.
The proton conducting solid-state polymer electrolyte comprising blend of poly(vinyl alcohol) (PVA) and poly(N-vinylimidazole) (PVIM), ammonium tetrafluoroborate (NH4BF4) as salt, and polyethylene glycol (PEG) (molecular weight 300 and 600) as plasticizer is prepared at various compositions by solution cast technique. The prepared films are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy analysis. The conductivity–temperature plots are found to follow an Arrhenius nature. The conductivity of solid polymer electrolytes is found to depend on salt and plasticizer content and also on the dielectric constant value and molecular weight of the plasticizer. Maximum ionic conductivity values of 2.20?×?10?4 and 1.28?×?10?4?S?cm?1 at 30 °C are obtained for the system (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300 and (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300, respectively. The blended polymer, complexed with salt and plasticizer, is shown to be a predominantly ionic conductor. The proton transport in the system may be expected to follow Grotthuss-type mechanism.  相似文献   

14.
The phase transition of metavariscite into berlinite has been studied by means of different techniques, namely electron probe micro analysis, environmental scanning electron microscopy, high-temperature X-ray diffraction, differential thermal analysis, thermogravimetry, thermoluminescence, and thermo Raman. The application of these techniques indicates that: (i) from room temperature to 150°C metavariscite (monoclinic dimorph AlPO4 ? 2H2O) appears as the main phase, (ii) in the range of 100–300°C metavariscite starts to lose the water molecules giving rise to form α-berlinite (trigonal AlPO4) that is the stable phase up to ca 540°C, and (iii) from 550°C onwards the structure adopts the more stable configuration, tetragonal β-berlinite.  相似文献   

15.
Saba Beg 《Phase Transitions》2016,89(2):167-179
New samples of the Bi2Zn0.1xTixV0.9O5.35+x; 0.02 ≤ x ≤ 0.08 system have been synthesized through a standard solid-state reaction route. XRD analysis and differential thermal analysis have been used to characterize the phase structure of samples. The γ′ phase is stabilized to room temperature in all investigated samples. The electrical properties of the BIZNTIVOX system have been studied by using AC impedance spectroscopy. An AC impedance response as a function of frequency (20 Hz–1 MHz) has been used to investigate the electrical conductivity and the dielectric permittivity in the temperature range of 150 °C–700 °C. In this temperature range, the phase transition γ′ to γ has been observed in all the compositions studied. AC impedance spectroscopy indicates that the resistance of samples decreases with increase of temperature. The ionic conductivity of samples appeared as a two-line region in Arrhenius dependence. At 300 °C, the highest ionic conductivity is shown by the composition x = 0.05 (σ300 = 1.35 × 10?4 S cm?1).  相似文献   

16.
The rubidium monoferrite RbFeO2-based solid solutions with the composition Rb2 − 2x Fe2 − x P x O4 have been synthesized, and their crystal structure and the temperature and concentration dependences of the total and electron conductivities have been studied. The introduction of P5+ ions has been found to sharply decrease the electron conductivity that prevails in pure rubidium monoferrite and, at the same time, to increase the ionic conductivity. The latter becomes dominant as the phosphorus concentration increases. The maximum rubidium-cation conductivity of the materials under study is ∼3 × 10−2 S/cm at 300°C and ∼3 × 10−1 S/cm at 700°C. The results have been compared with the previously obtained data for similar solid solutions based on rubidium monogallate and monoaluminate.  相似文献   

17.
The LiNi3/5Fe2/5VO4 has been synthesized by solution-based chemical method. Grain morphology of the material is investigated using field emission scanning electron microscopy. The existence of electrical conduction due to bulk and grain boundary effects at 21, 75 and 250 °C, and grain boundary and polarization effects at 275 and 300 °C has been verified by impedance spectroscopy. DC conductivity shows electrical conduction in the material as a thermally activated process. The frequency dependence of AC conductivity is described by Jonscher's power law.  相似文献   

18.
We have obtained the metastable phase of the thermoelectric alloy Bi0.4Sb1.6Te3 with electron type conductivity for the first time using the method of quenching under pressure after treatment at P=4.0 GPa and T=400–850 °C. We have consequently performed comparative studies with the similar phase of Sb2Te3. The polycrystalline X-ray diffraction patterns of these phases are similar to the known monoclinic structure α-As2Te3 (C2/m) with less monoclinic distortion, β ≈ 92°. We have measured the electrical resistivity and the Hall coefficient in the temperature range of T=77?450 K and we have evaluated the Hall mobility and density of charge carriers. The negative Hall coefficient indicates the dominant electron type of carriers at temperatures up to 380 K in the metastable phase of Sb2Te3 and up to 440 K in the metastable state of Bi0.4Sb1.6Te3. Above these temperatures, the p-type conductivity proper to the initial phases dominates.  相似文献   

19.
《Solid State Ionics》1988,26(3):229-235
Amorphous LiZr2(PO4)3 has been prepared at room temperature starting from aqueous solutions of ZrOCl2, H3PO4, and LiOH and then crystallized by heating at temperatures between 600 and 900°C. The material obtained at 900°C has been characterized by X-ray powder diffractometry, DSC analysis, and ac conductivity. It is monoclinic from 20 up to about 300°C and orthorhombic at higher temperatures. A change in the activation energy for conduction (from 0.79 to 0.43 eV) and a weak endothermic effect (0.9–1.7 cal/g) are associated with the phase transition. The ac conductivity of sintered pellets is, on average, 7×10−4 S cm−1 at 300°C.  相似文献   

20.
In situ transmission electron microscopy investigations of solid-state synthesis in Al/Au thin bilayer films are conducted. The samples are heated in the column of a transmission electron microscope. The heating temperature is changed from room temperature to 300°C with a heating rate of up to 120°C min?1. It is found that solid-phase synthesis starts at ≈100°C. At 140 ± 5°C, two crystal phases, Al2Au (Fm3m) and AlAu2 (I4/mmm), are simultaneously observed, while at 235 ± 5°C and higher (up to 300°C) only Al2Au phase is detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号