首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 1 毫秒
1.
In this paper a mean-field theory for the spin-liquid paramagnetic non-superconducting phase of the p- and n-type high-Tc cuprates is developed. This theory applied to the effective t-t'-t′′-J* model with the ab initio calculated parameters and with the three-site correlated hoppings. The static spin-spin and kinematic correlation functions beyond Hubbard-I approximation are calculated self-consistently. The evolution of the Fermi surface and band dispersion is obtained for the wide range of doping concentrations x. For p-type systems the three different types of behavior are found and the transitions between these types are accompanied by the changes in the Fermi surface topology. Thus a quantum phase transitions take place at x = 0.15 and at x = 0.23.Due to the different Fermi surface topology we found for n-type cuprates only one quantum critical concentration, x = 0.2. The calculated doping dependence of the nodal Fermi velocity and the effective mass are in good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号