首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-objective particle swarm optimization (MOPSO) is an optimization technique inspired by bird flocking, which has been steadily gaining attention from the research community because of its high convergence speed. On the other hand, in the face of increasing complexity and dimensionality of today’s application coupled with its tendency of premature convergence due to the high convergence speeds, there is a need to improve the efficiency and effectiveness of MOPSO. In this paper a competitive and cooperative co-evolutionary approach is adapted for multi-objective particle swarm optimization algorithm design, which appears to have considerable potential for solving complex optimization problems by explicitly modeling the co-evolution of competing and cooperating species. The competitive and cooperative co-evolution model helps to produce the reasonable problem decompositions by exploiting any correlation, interdependency between components of the problem. The proposed competitive and cooperative co-evolutionary multi-objective particle swarm optimization algorithm (CCPSO) is validated through comparisons with existing state-of-the-art multi-objective algorithms using established benchmarks and metrics. Simulation results demonstrated that CCPSO shows competitive, if not better, performance as compared to the other algorithms.  相似文献   

2.
We study a variation of the knapsack problem in which each item has a profit, a weight and a penalty; the sum of profits of the selected items minus the largest penalty associated with the selected items must be maximized. We present an ILP formulation and an exact optimization algorithm.  相似文献   

3.
A new ranking scheme based on equilibrium strategy of selection is proposed for multi-objective particle swarm optimization (MOPSO), and the preference ordering is used to identify the “best compromise” in the ranking stage. This scheme increases the selective pressure, especially when the number of objectives is very large. The proposed algorithm has been compared with other multi-objective evolutionary algorithms (MOEAs). The experimental results indicate that our algorithm produces better convergence performance.  相似文献   

4.
We construct a fast algorithm with time complexity O(nlogn) for a continuous bilevel knapsack problem with interdiction constraints for n items. This improves on a recent algorithm from the literature with quadratic time complexity O(n2).  相似文献   

5.
We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem.  相似文献   

6.
The multidimensional knapsack problem (MKP) is a difficult combinatorial optimization problem, which has been proven as NP-hard problems. Various population-based search algorithms are applied to solve these problems. The particle swarm optimization (PSO) technique is adapted in our study, which proposes two novel PSO algorithms, namely, the binary PSO with time-varying acceleration coefficients (BPSOTVAC) and the chaotic binary PSO with time-varying acceleration coefficients (CBPSOTVAC). The two proposed methods were tested using 116 benchmark problems from the OR-Library to validate and demonstrate the efficiency of these algorithms in solving multidimensional knapsack problems. The results were then compared with those in the other two existing PSO algorithms. The simulation and evaluation results showed that the proposed algorithms, BPSOTVAC and CBPSOTVAC, are superior over the other methods according to its success rate, mean absolute deviation, mean absolute percentage error, least error, and standard deviation.  相似文献   

7.
An algorithm called DE-PSO is proposed which incorporates concepts from DE and PSO, updating particles not only by DE operators but also by mechanisms of PSO. The proposed algorithm is tested on several benchmark functions. Numerical comparisons with different hybrid meta-heuristics demonstrate its effectiveness and efficiency.  相似文献   

8.
This paper presents a novel discrete artificial bee colony (DABC) algorithm for solving the multi-objective flexible job shop scheduling problem with maintenance activities. Performance criteria considered are the maximum completion time so called makespan, the total workload of machines and the workload of the critical machine. Unlike the original ABC algorithm, the proposed DABC algorithm presents a unique solution representation where a food source is represented by two discrete vectors and tabu search (TS) is applied to each food source to generate neighboring food sources for the employed bees, onlooker bees, and scout bees. An efficient initialization scheme is introduced to construct the initial population with a certain level of quality and diversity. A self-adaptive strategy is adopted to enable the DABC algorithm with learning ability for producing neighboring solutions in different promising regions whereas an external Pareto archive set is designed to record the non-dominated solutions found so far. Furthermore, a novel decoding method is also presented to tackle maintenance activities in schedules generated. The proposed DABC algorithm is tested on a set of the well-known benchmark instances from the existing literature. Through a detailed analysis of experimental results, the highly effective and efficient performance of the proposed DABC algorithm is shown against the best performing algorithms from the literature.  相似文献   

9.
We consider an n-job, m-machine lot-streaming problem in a flowshop with equal-size sublots where the objective is to minimize the total weighted earliness and tardiness. To solve this problem, we first propose a so-called net benefit of movement (NBM) algorithm, which is much more efficient than the existing linear programming model for obtaining the optimal starting and completion times of sublots for a given job sequence. A new discrete particle swarm optimization (DPSO) algorithm incorporating the NBM algorithm is then developed to search for the best sequence. The new DPSO improves the existing DPSO by introducing an inheritance scheme, inspired by a genetic algorithm, into particles construction. To verify the proposed DPSO algorithm, comparisons with the existing DPSO algorithm and a hybrid genetic algorithm (HGA) are made. Computational results show that the proposed DPSO algorithm with a two-point inheritance scheme is very competitive for the lot-streaming flowshop scheduling problem.  相似文献   

10.
In this paper we present a new Discrete Particle Swarm Optimization (DPSO) approach to face the NP-hard single machine total weighted tardiness scheduling problem in presence of sequence-dependent setup times. Differently from previous approaches the proposed DPSO uses a discrete model both for particle position and velocity and a coherent sequence metric. We tested the proposed DPSO mainly over a benchmark originally proposed by Cicirello in 2003 and available online. The results obtained show the competitiveness of our DPSO, which is able to outperform the best known results for the benchmark. In addition, we also tested the DPSO on a set of benchmark instances from ORLIB for the single machine total weighted tardiness problem, and we analysed the role of the DPSO swarm intelligence mechanisms as well as the local search intensification phase included in the algorithm.  相似文献   

11.
In this paper, the chance-constrained knapsack problem (CKP) is addressed. Relying on robust optimization, a tractable combinatorial algorithm is proposed to solve approximately CKP. For two specific classes of uncertain knapsack problems, it is proved to solve CKP at optimality.  相似文献   

12.
This is a summary of the main results presented in the author’s PhD thesis. This thesis was supervised by El-Ghazali Talbi, and defended on 21 June 2005 at the University of Lille (France). It is written in French and is available at http://www.lifl.fr/~basseur/These.pdf. This work deals with the conception of cooperative methods in order to solve multi-objective combinatorial optimization problems. Many cooperation schemes between exact and/or heuristic methods have been proposed in the literature. We propose a classification of such schemes. We propose a new heuristic called adaptive genetic algorithm (AGA), that is designed for an efficient exploration of the search space. We consider several cooperation schemes between AGA and other methods (exact or heuristic). The performance of these schemes are tested on a bi-objective permutation flow-shop scheduling problem, in order to evaluate the interest of each type of cooperation.  相似文献   

13.
We propose an efficient dynamic programming algorithm for solving a bilevel program where the leader controls the capacity of a knapsack, and the follower solves the resulting knapsack problem. We propose new recursive rules and show how to solve the problem as a sequence of two standard knapsack problems.  相似文献   

14.
《Optimization》2012,61(4):1057-1080
In this paper, a novel hybrid glowworm swarm optimization (HGSO) algorithm is proposed. The HGSO algorithm embeds predatory behaviour of artificial fish swarm algorithm (AFSA) into glowworm swarm optimization (GSO) algorithm and combines the GSO with differential evolution on the basis of a two-population co-evolution mechanism. In addition, to overcome the premature convergence, the local search strategy based on simulated annealing is applied to make the search of GSO approach the true optimum solution gradually. Finally, several benchmark functions show that HGSO has faster convergence efficiency and higher computational precision, and is more effective for solving constrained multi-modal function optimization problems.  相似文献   

15.
The particle swarm optimization (PSO) technique is a powerful stochastic evolutionary algorithm that can be used to find the global optimum solution in a complex search space. This paper presents a variation on the standard PSO algorithm called the rank based particle swarm optimizer, or PSOrank, employing cooperative behavior of the particles to significantly improve the performance of the original algorithm. In this method, in order to efficiently control the local search and convergence to global optimum solution, the γ best particles are taken to contribute to the updating of the position of a candidate particle. The contribution of each particle is proportional to its strength. The strength is a function of three parameters: strivness, immediacy and number of contributed particles. All particles are sorted according to their fitness values, and only the γ best particles will be selected. The value of γ decreases linearly as the iteration increases. A time-varying inertia weight decreasing non-linearly is introduced to improve the performance. PSOrank is tested on a commonly used set of optimization problems and is compared to other variants of the PSO algorithm presented in the literature. As a real application, PSOrank is used for neural network training. The PSOrank strategy outperformed all the methods considered in this investigation for most of the functions. Experimental results show the suitability of the proposed algorithm in terms of effectiveness and robustness.  相似文献   

16.
The knapsack problem (KP) is generalized to the case where items are partially ordered through a set of precedence relations. As in ordinary KPs, each item is associated with profit and weight, the knapsack has a fixed capacity, and the problem is to determine the set of items to be packed in the knapsack. However, each item can be accepted only when all the preceding items have been included in the knapsack. The knapsack problem with these additional constraints is referred to as the precedence-constrained knapsack problem (PCKP). To solve PCKP exactly, we present a pegging approach, where the size of the original problem is reduced by applying the Lagrangian relaxation followed by a pegging test. Through this approach, we are able to solve PCKPs with thousands of items within a few minutes on an ordinary workstation.  相似文献   

17.
It is well known that the linear knapsack problem with general integer variables (LKP) is NP-hard. In this paper we first introduce a special case of this problem and develop an O(n) algorithm to solve it. We then show how this algorithm can be used efficiently to obtain a lower bound for a general instance of LKP and prove that it is at least as good as the linear programming lower bound. We also present the results of a computational study that show that for certain classes of problems the proposed bound on average is tighter than other bounds proposed in the literature.  相似文献   

18.
The problem of portfolio selection is a standard problem in financial engineering and has received a lot of attention in recent decades. Classical mean–variance portfolio selection aims at simultaneously maximizing the expected return of the portfolio and minimizing portfolio variance. In the case of linear constraints, the problem can be solved efficiently by parametric quadratic programming (i.e., variants of Markowitz’ critical line algorithm). However, there are many real-world constraints that lead to a non-convex search space, e.g., cardinality constraints which limit the number of different assets in a portfolio, or minimum buy-in thresholds. As a consequence, the efficient approaches for the convex problem can no longer be applied, and new solutions are needed.In this paper, we propose to integrate an active set algorithm optimized for portfolio selection into a multi-objective evolutionary algorithm (MOEA). The idea is to let the MOEA come up with some convex subsets of the set of all feasible portfolios, solve a critical line algorithm for each subset, and then merge the partial solutions to form the solution of the original non-convex problem. We show that the resulting envelope-based MOEA significantly outperforms existing MOEAs.  相似文献   

19.
The multi-objective resource allocation problem (MORAP) addresses the important issue which seeks to find the expected objectives by allocating the limited amount of resource to various activates. Resources may be manpower, assets, raw material or anything else in limited supply which can be used to accomplish the goals. The goals may be objectives (i.e., minimizing costs, or maximizing efficiency) usually driven by specific future needs. In this paper, in order to obtain a set of Pareto solution efficiently, we proposed a modified version of ant colony optimization (ACO), in this algorithm we try to increase the efficiency of algorithm by increasing the learning of ants. Effectiveness and efficiency of proposed algorithm was validated by comparing the result of ACO with hybrid genetic algorithm (hGA) which was applied to MORAP later.  相似文献   

20.
In goal programming problem, the general equilibrium and optimization are often two conflicting factors. This paper proposes a generalized varying-domain optimization method for fuzzy goal programming (FGP) incorporating multiple priorities. According to the three possible styles of the objective function, the varying-domain optimization method and its generalization are proposed. This method can generate the results consistent with the decision-maker (DM)’s expectation, that the goal with higher priority may have higher level of satisfaction. Using this new method, it is a simple process to balance between the equilibrium and optimization, and the result is the consequence of a synthetic decision between them. In contrast to the previous method, the proposed method can make that the higher priority achieving the higher satisfactory degree. To get the global solution of the nonlinear nonconvex programming problem resulting from the original problem and the varying-domain optimization method, the co-evolutionary genetic algorithms (GAs), called GENOCOPIII, is used instead of the SQP method. In this way the DM can get the optimum of the optimization problem. We demonstrate the power of this proposed method by illustrative examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号