首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电—声超导电性的对称理论   总被引:1,自引:0,他引:1       下载免费PDF全文
易林 《物理学报》1994,43(9):1523-1530
利用新的库珀对平均汤近似,导出了电-声系统中声子-库珀对有效作用,证明了声子通过交换虚的库珀对能够产生一个有效的吸引力,导致两动量相反的声子配对并构成稳定的声超导态。发现电子超导态与声子超导态的直积能构成稳定的电-声对称的高温超导基态。在声子-库珀对弱耦合极限下,基态对称破缺成为传统的BCS基态。  相似文献   

2.
易林 《物理学报》1994,43(9):1523-1530
利用新的库珀对平均汤近似,导出了电-声系统中声子-库珀对有效作用,证明了声子通过交换虚的库珀对能够产生一个有效的吸引力,导致两动量相反的声子配对并构成稳定的声超导态。发现电子超导态与声子超导态的直积能构成稳定的电-声对称的高温超导基态。在声子-库珀对弱耦合极限下,基态对称破缺成为传统的BCS基态。  相似文献   

3.
The Cu-O plane and the clusters that possess the same C4v symmetry around a Cu ion have 2-hole eigenstates of the kinetic energy with vanishing on-site repulsion (W=0 pairs). Cluster calculations by exact diagonalisation show that these are the quasiparticles that lead to a paired ground state, and have superconducting flux-quantisation properties. Here, we extend the theory to the full plane, and show that the W=0 quasiparticles are again the natural explanation of superconducting flux-quantisation. Moreover, by a new approach which is exact in principle, we calculate the effective interaction between two holes added to the ground state of the repulsive three-band Hubbard model. To explain how a noninteracting electron gas becomes a superconductor when switching the local Coulomb interaction, we obtain a closed-form analytic expression including the effects of all virtual transitions to 4-body intermediate states (exchange of an electron-hole pair). Our scheme is ready to include other interactions which are not considered in the Hubbard model but may be important. In the plane, the W=0 pairs have 1 B 2 and 1 A 2 symmetry. The effective interaction in these channels is attractive and leads to a Cooper-like instability of the Fermi liquid, while it is repulsive for triplet pairs. From , we derive an integral equation for the pair eigenfunction; the binding energy of the pairs is in the range of tens of meV. However, our symmetry-based method is far more general than the model. Received 18 December 1998  相似文献   

4.
Based on the random phase approximation calculation in two-orbital honeycomb lattice model, we investigate the pairing symmetry of Ni-based transition-metal trichalcogenides by electron doping access to type-II van Hove singularities (vHs). We find that chiral even-parity d + id-wave (Eg) state is suppressed by odd-parity p + ip-wave (Eu) state when electron doping approaches the type-II vHs. The type-II vHs peak in density of states (DOS) enables to strengthen the ferromagnetic fluctuation, which is responsible for triplet pairing. The competition between antiferromagnetic and ferromagnetic fluctuation results in pairing phase transition from singlet to triplet pairing. The Ni-based transitionmetal trichalcogenides provide a promising platform to unconventional superconductor emerging from electronic DOS.  相似文献   

5.
We have proposed a real-time method of neutron reflectometry. The magnetic state of the Ta/V/FM/Nb/Si ferromagnetic–superconducting system has been analyzed. Relaxation of the inhomogeneous magnetic state with a characteristic time of several hours, which depends on the magnetic field magnitude and temperature, has been observed. The relaxation of the domain structure has changed upon a transition of the V and Nb layers to the superconducting state. It has been concluded that real-time reflectometry data for polarized neutrons are important for determining the origin of magnetism in ferromagnetic–superconducting layered structures.  相似文献   

6.
张保磊  王家序  肖科  李俊阳 《物理学报》2014,63(15):154601-154601
纳米尺度探针是研究纳米薄膜材料的重要工具.针对纳米探针和石墨烯相互作用有限元模型静态计算中难以收敛的困难,应用动态显式算法通过间歇式探针进给方式进行能量耗散,得出静态计算结果.模型中界面作用力由界面黏结能和原子间作用势导出并植入Abaqus软件中界面作用子程序,实现对石墨烯、探针,基体系统内相互作用的仿真计算.通过对比计算结果和实验数据,对实验结果给出了一致性解释.  相似文献   

7.
赵龙  芦鹏飞  俞重远  马世甲  丁路  刘建涛 《中国物理 B》2012,21(9):97103-097103
The electronic and magnetic properties of (Mn,C)-codoped ZnO are studied in the Perdew-Burke-Ernzerhof form of generalized gradient approximation of the density functional theory. By investigating five geometrical configurations, we find that Mn doped ZnO exhibits anti-ferromagnetic or spin-glass behaviour, and there are no carriers to mediate the long range ferromagnetic (FM) interaction without acceptor co-doping. We observe that the FM interaction for (Mn,C)-codoped ZnO is due to the hybridization between C 2p and Mn 3d states, which is strong enough to lead to hole-mediated ferromagnetism at room temperature. Meanwhile, we demonstrate that ZnO co-doped with Mn and C has a stable FM ground state and show that the (Mn,C)-codoped ZnO is FM semiconductor with super-high Curie temperature (T C = 5475 K). These results are conducive to the design of dilute magnetic semiconductors with codopants for spintronics applications.  相似文献   

8.
We review our nuclear-magnetic resonance (NMR) and nuclear-quadrupole-resonance (NQR) studies in superconducting Sr2RuO4, which have been performed in order to investigate the gap structure and the pairing symmetry in the superconducting state and magnetic fluctuations in the normal state. The spin-lattice relaxation rate (1/T1) of a high-quality sample with shows a sharp decrease without a coherence peak just below Tc, followed by a T3 behavior down to 0.15 K. This result indicates that the superconducting gap in pure Sr2RuO4 is a highly anisotropic character with a line-node gap. The Knight shift, which is related to the spin susceptibility, is unchanged in the superconducting state irrespective of the direction of the applied fields and various magnitude of the field. This result strongly suggests that the superconducting pairs are in the spin-triplet state, and the spin direction of the triplet pairs is considered to be changed by small fields of several hundred Oe.  相似文献   

9.
The hyperbolic metric of the dispersion law (the effective mass tensor components of carriers are opposite in sign) in the vicinity of the Fermi contour in high-T c superconducting cuprates in the case of repulsive interaction gives rise to a superconducting state characterized by the condensate of pairs with a large total momentum (hyperbolic pairing). The gain in the energy of the superconducting state over the normal state is due to the fact that a change in the kinetic energy of pairs (because of the negative light component of the effective mass) dominates over the change in the potential energy (corresponding to energy loss). The shift of the chemical potential upon the transition to the superconducting phase is substantial in this case. With increasing repulsive interaction, the superconducting gap δK increases and the resulting gain in energy changes to an energy loss at a certain critical value of the repulsive potential. The low temperature T c of the superconducting transition and the large value of δ K in this region of potential values are the reasons for the high value of the 2δK/T c ratio and for the developed quantum fluctuations that are observed in underdoped cuprate superconductors.  相似文献   

10.
陈昌永 《光子学报》2002,31(7):799-801
提出了一种制备偶数个多原子Greenberger-Horne-Zerlinger态的方案,它是基于原子-腔场相互作用.首先n个分离的腔初始时处于真空态,通过双光子转移,把n个腔制备成数态|2>和真空态|o>的缠结态.随后,与腔场发生共振相互作用的2n个等同的原子被分别送入n个腔,通过相互作用后,2n个原子处于GHZ态,而n个腔仍然处于真空态.  相似文献   

11.
Thermodynamic properties of quasiparticles in a graphene-based structures are investigated. Two graphene superconducting layers (one superconducting component is placed on the top layered-graphene structure and the other component in the bottom) separated by oxide dielectric layers and one normal graphene layer in the middle. The quasiparticle flow emerged due to external gate voltage, we considered it as a gas of electron–hole pairs whose components belong to different layers. This is a striking result in view of the complexity of these systems: we have established that specific heat exhibits universal (?T3) behavior at low T, independent from the gate voltage and the superconducting gap. The experimental observation of this theoretical prediction would be an important step towards our understanding of critical massless matter.  相似文献   

12.
In this article we study the role of Rashba spin–orbit coupling and electron–phonon interaction on the electronic structure of zigzag graphene nanoribbon with different width. The total Hamiltonian of nanoribbon is written in the tight binding form and the electron–electron interaction is modeled in the Hubbard term. We used a unitary transformation to reach an effective Hamiltonian for nano ribbon in the presence of electron–phonon interaction. Our results show that small Rashba spin orbit coupling annihilates the anti-ferromagnetic phase in the zigzag edges of ribbon and the electron–phonon interaction yields small polaron formation in graphene nano ribbon. Furthermore, Rashba type spin–orbit coupling increases (decreases) the polaron formation energy for up (down) spin state.  相似文献   

13.
The particle-hole continuum in the Dirac sea of graphene has a unique window underneath, which in principle leaves room for bound state formation in the triplet particle-hole channel (Baskaran and Jafari 2002 Phys. Rev. Lett. 89 016402). In this work, we construct appropriate triplet particle-hole operators and, using a repulsive Hubbard-type effective interaction, we employ equations of motion to derive approximate eigenvalue equations for such triplet operators. While the secular equation for the spin density fluctuations gives rise to an equation which is second order in the strength of the short range interaction, the explicit construction of the triplet operators obtained here shows that, in terms of these operators, the second-order equation can be factorized to two first-order equations, one of which gives rise to a solution below the particle-hole continuum of Dirac electrons in undoped graphene.  相似文献   

14.
Ferromagnetism in Mn-doped GaAs, the prototypical dilute magnetic semiconductor (DMS), has so far been attributed to hole mediated RKKY-type interactions. First-principles calculations reveal a strong direction dependence of the ferromagnetic (FM) stabilization energy for Mn pairs, a dependence that cannot be explained within RKKY. In the limit of a hostlike hole engineered here where the RKKY model is applicable, the exchange energies are strongly reduced, suggesting that this limit cannot explain the observed ferromagnetism. The dominant contribution stabilizing the FM state is found to be maximal for 110-oriented Mn pairs and minimal for 100-oriented Mn pairs, providing an alternate explanation for magnetism in such materials in terms of energy lowering due to p-d hopping interactions, and offering a new design degree of freedom to enhance FM.  相似文献   

15.
A rather general enhancement of superconductivity is demonstrated in a hybrid structure consisting of a submicron superconducting (SC) sample combined with an in-plane ferromagnet (FM). The superconducting state resists much higher applied magnetic fields for both perpendicular polarities, as the applied field is screened by the FM. In addition, FM induces (in the perpendicular direction to its moment) two opposite currents in the SC plane, under and aside the magnet, respectively. Because of the compensation effects, superconductivity persists up to higher applied currents. With increasing current, the sample undergoes SC-"resistive"-normal state transitions through a mixture of vortex-antivortex and phase-slip phenomena.  相似文献   

16.
We study the ferromagnetic superconductor of UGe2 applying our previous model [Phys. Rev. B 61 (2000), 4289] for the high transition temperature superconductivity (HTSC). The Coulomb interaction for triplet electron pairs is reduced by a difference of the exchange interaction. In the case of UGe2 including other heavy fermion superconductors, coexistence of triplet superconductivity and ferromagnetism is possible in the case of our scheme. We also investigate the pressure-dependence of Curie temperature, Tc and superconducting temperature, Tsc.  相似文献   

17.
The effect of spin relaxation on tunnel magnetoresistance (TMR) in a ferromagnet/superconductor/ferromagnet (FM/SC/FM) double tunnel junction is theoretically studied. The spin accumulation in SC is determined by balancing of the spin-injection rate and the spin-relaxation rate. In the superconducting state, the spin-relaxation time τs becomes longer with decreasing temperature, resulting in a rapid increase of TMR. The TMR of FM/SC/FM junctions provides a useful probe to extract information about spin-relaxation in superconductors.  相似文献   

18.
We propose a route to a one-dimensional Fulde-Ferrell-Larkin-Ovchinnikov state in the absence of broken time-reversal symmetry. At present such a state may be encouraged in a clean (no disorder) AlAs quantum wire fabricated using the cleaved edge overgrowth technique. The fabrication technique captures two degenerate nonoverlapping bands separated in momentum-space by half an umklapp vector which leads to four Fermi points. Using field theoretic methods such as abelian bosonization and the renormalization group scheme we treat the important low energy long wavelength fermionic interaction terms for this one dimensional system. Due to the specific bandstructure arrangement of the quantum wire there is a new class of unique umklapp assisted interactions. These umklapp interactions are present at all electronic densities and are not related to the commensurability of the electron gas with the underlying lattice. We show that in the presence of the umklapp interactions and without any external perturbations such as a magnetic or electric field a singlet superconducting ground state is preferred with non-zero center-of-mass momentum for the Cooper pairs. The finite pairing momentum of the Cooper pairs is an indication of a Fulde-Ferrell-Larkin-Ovchinnikov state which is known to lead to inhomogeneous superconductivity.  相似文献   

19.
Inelastic cold-neutron scattering on LaCoO3 provided evidence for a distinct low energy excitation at 0.6 meV coincident with the thermally induced magnetic transition. Coexisting strong ferromagnetic (FM) and weaker antiferromagnetic correlations that are dynamic follow the activation to the excited state, identified as the intermediate S = 1 spin triplet. This is indicative of dynamical orbital ordering favoring the observed magnetic interactions. With hole doping as in La(1-x)Sr(x)CoO3 , the FM correlations between Co spins become static and isotropically distributed due to the formation of FM droplets. The correlation length and condensation temperature of these droplets increase rapidly with metallicity due to the double exchange mechanism.  相似文献   

20.
Superconducting states of pure and doped graphene   总被引:3,自引:0,他引:3  
We study the superconducting phases of the two-dimensional honeycomb lattice of graphene. We find two spin singlet pairing states; s wave and an exotic p+ip that is possible because of the special structure of the honeycomb lattice. At half filling, the p+ip phase is gapless and superconductivity is a hidden order. We discuss the possibility of a superconducting state in metal coated graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号