共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to find new functions of monolayer MoS2 in nanoelectronics or spin electronic devices, using spin-polarized density functional theory (DFT) calculations with on-site coulomb interaction (U), we investigated substitutional doping of Mo atoms of monolayer zigzag MoS2 nanoribbon (ZZ-MoS2 NR) by transition metals (TM) (where TM = Ti, V, Cr, Mn) at the Mo-edge, S-edge, and the middle of the NRs. The results of this study indicate the NR widened irrespective of the doped TM position and type, and the Mo-edge was found as the easiest substitutional position. For ZZ-MoS2 NR doped by Mn, Cr or V atoms, the preferred magnetic coupling state is the edge atoms of S at the S-edge, exhibiting the same spin polarization with TM (named the FM1 state), attributing the NR with metallic magnetism. For Ti-doped monolayer ZZ-MoS2 NR, in addition to the FM1 state, other preferred magnetic coupling state was observed in which the edge atoms of S at the S-edge exhibit the opposite spin polarization with that of Ti (named the FM2 state). Thus, the NR doped by Ti atom possesses metallic (FM1 state) or half-metallic (FM2 state) magnetism. The total magnetic moments of the ZZ-MoS2 NR doped by TM follows a linear relationship as a function of the TM dopants (Mn, Cr, V, and Ti). Under applied strain, the NR doped by Ti atom only presents the characteristics of half-metallic magnetism as the initial one in the FM2 state, and its total magnetic moment always remained 0 μB, i.e., it was not affected by the width of the NR. This study provides a rational route of tuning the magnetic properties of ZZ-MoS2 NRs for their promising applications in nanoelectronics and spin electronic devices. 相似文献
2.
Single-crystalline Li2MnO3 nanoribbons have been synthesized via the precursor template Na0.44MnO2 nanoribbons in LiNO3-LiCl eutectic molten salt. The as-prepared Li2MnO3 nanoribbons are characterized by a range of methods including X-ray diffractometer, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscopy, and selected-area electron diffraction techniques. Magnetization measurements show that the Li2MnO3 nanoribbons present weak ferromagnetism, spin-glass-like behavior, and exchange bias effect at low temperature. The magnetic behaviors of Li2MnO3 nanoribbons can be interpreted based on a core-shell model. 相似文献
3.
在氧化铝模板的纳米孔洞中, 用电化学的方法沉积铁镍合金纳米线,经过550℃30h氧化处理 , 成功制备出 NiFe2O4纳米线阵列. 分别用扫描电子显微镜 (SEM) 、透射电 子显微镜 (TEM) 、x射线衍射仪 (XRD) 和振动样品磁场计 (VSM) 对样品的形貌、晶体结构 和磁学性质进行了表征测试. SEM和TEM观察结果显示氧化铝模板的孔洞分布均匀,孔心距约 为110nm; 纳米线的直径约为70nm. XRD显示纳米线阵列的物相结构为NiFe2O4; VSM测试结果表明,NiFe2O4纳米线阵列膜的易磁化方向垂直于膜面. 当垂直 磁化时磁滞回线的矩形比约为05,矫顽力为41×103A/m,比氧化处理前的铁镍合金 纳米线阵列都有显著提高.
关键词:
纳米线
Ni Fe2O4
矫顽力 相似文献
4.
The electronic structures and magnetic properties of Fe16N2 system and their pressure dependence were investigated by using first-principles calculations based on the density functional theory. It has been found that the total magnetic moment in Fe16N2 system decreases monotonically as increasing pressure from 0 to 14.6 GPa. A phase transition from ferromagnetic (FM) to non-magnetic (NM) occurs with a volume collapse of around 0.008 at 14.6 GPa, The lattice constants a and c for magnetic results decrease monotonically as pressure increasing from 0 to 14.6 GPa, at 14.6 GPa, the lattice constant a decreases sharply, on the contrary, the lattice constant c increases abruptly. We think that the change of microscopic structure of Fe16N2 is responsible for the phase transition from FM to NM. 相似文献
5.
Maokun Wu Xiaolong Yao Yuan Hao Hong Dong Yahui Cheng Hui Liu Feng Lu Weichao Wang Kyeongjae Cho Wei-Hua Wang 《Physics letters. A》2018,382(2-3):111-115
Utilizing first-principles calculations, the electronic structures, magnetic properties and band alignments of monolayer MoS2 doped by 3d transition metal atoms have been investigated. It is found that in V, Cr, Mn, Fe-doped monolayers, the nearest neighboring S atoms (SNN) are antiferromagnetically polarized with the doped atoms. While in Co, Ni, Cu, Zn-doped systems, the SNN are ferromagnetically coupled with the doped atoms. Moreover, the nearest neighboring Mo atoms also demonstrate spin polarization. Compared with pristine monolayer MoS2, little change is found for the band edges' positions in the doped systems. The Fermi level is located in the spin-polarized impurity bands, implying a half-metallic state. These results provide fundamental insights for doped monolayer MoS2 applying in spintronic, optoelectronic and electronic devices. 相似文献
6.
The detailed orbital-decomposed electronic structures and magnetic properties of the double perovskite Sr2FeReO6 have been studied using the first-principles projector augmented wave (PAW) potential within the generalized gradient approximation (GGA). Both occupied and unoccupied s and three p states of Fe3+ ion are located far away from the Fermi level, while all up-spin states and most down-spin states are completely filled for the s and three p states of Re5+ ion. The octahedral crystal field of the oxygen atoms around transition-metal (TM) sites splits the five-fold degenerate d states of the free TM atoms into triply degenerate t2g states with smaller bonding-antibonding splitting and doubly degenerate eg states with larger bonding-antibonding splitting. The Fe3+ and Re5+ ions are in the states (3d5, S=5/2) and (5d2, S=1) with magnetic moments 3.70 and −0.86μB, respectively and thus antiferromagnetic coupling via oxygen between them. There are no direct interactions between two nearest Fe-Fe or Re-Re pairs, whereas along each Fe-O-Re-O-Fe or Re-O-Fe-O-Re chains, the hybridizations between Fe 3d and 4s, O 2s and 2p, as well as Re 5p, 5d and 6s orbitals are fairly significant. 相似文献
7.
Two new transition metal dinitrides, ReN2 and WN2, with the P4/mmm structure are investigated by the first-principles calculations. The computed shear moduli of 327 GPa for ReN2 and 334 GPa for WN2 exceed those of all transition metal dinitrides previously reported. The estimated theoretical hardness are 46.3 GPa for ReN2 and 47.9 GPa for WN2, respectively. The calculated high shear moduli and hardness indicate that they are potential ultrahard materials. It is important to note that the computed hardness of the weakest bond are 34.7 GPa (W-N) for WN2 and 33.1 GPa (Re-N) for ReN2, much higher than that of 21.1 GPa (Re-B) for ReB2, which suggests that tetragonal ReN2 and WN2 are probably harder than ReB2. The total and partial electron density of states and the electron localization function for ReN2 and WN2 are analyzed. We attribute the high bulk modulus, shear modulus, and hardness to a three-dimensional covalently bonded framework in tetragonal ReN2 and WN2. Our calculations show that tetragonal ReN2 is expected to be synthesized above 62.7 GPa and tetragonal WN2 may be hard to be synthesized. 相似文献
8.
The thermodynamic properties of the spinel ferromagnetic compounds CdCr2Se4 and CdCr2S4 have been investigated by making heat capacity and thermal expansion measurements on single crystals. For both compounds, the ferromagnetic transition is marked by λ-type thermal anomalies, and the results provide a pressure dependence of the transition temperatures that is in agreement with direct measurements. Below the transition, CdCr2S4 shows an anomalous heat-capacity contribution and negative thermal expansion, which are in contrast to the conventional behavior found in CdCr2Se4. 相似文献
9.
Magnetic and electrical properties of well-characterized Gd0.5Ba0.5CoO2.9 have been studied carefully in order to compare them with those of other analogous cobaltates of the type Ln0.5A0.5CoO3 (Ln=La, Nd and A=Sr, Ba) which are ferromagnetic. The results show that Gd0.5Ba0.5CoO2.9, which has A-site cation ordering at room temperature, does not become a genuine ferromagnet at low temperatures, but the ferromagnetic interactions observed at 280 K give over to an antiferromagnetic (AFM) state on cooling to 230 K. The AFM state is rendered ferromagnetic on the application of high magnetic fields. The properties can be understood on the basis of phase separation induced by the large A-site cation-disorder, arising from the size mismatch. 相似文献
10.
The structural, electronic and magnetic properties of the double perovskite Pb2FeReO6 have been studied by using the first-principles projector augmented wave (PAW) potential within the generalized gradient approximation (GGA) as well as taking into account the on-site Coulomb repulsive and exchange coupling interactions (GGA+U). The optimized crystal structure of the Pb2FeReO6 is a body-centered tetragonal (BCT) with a space group of I4/m and the lattice constants of a=b=5.59 Å and c=7.93 Å, consistent with the experimental results. The two axial transition metal and oxygen (TM–O) distances are slightly larger than the four equatorial TM–O distances and shows the existence of the Jahn–Teller structural distortion in FeO6 and ReO6 octahedra. The Fe3+ and Re5+ ions are in the states (3d5, S=5/2) and (5d2, S=1) with magnetic moments 3.929 and −0.831μB respectively and thus antiferromagnetic (AFM) coupling via oxygen between them. The half-metallic (HM) ferromagnetic (FM) nature implies a potential application of this new compound in magnetoelectronic and spintronics devices. 相似文献
11.
Growth steps and 2D nuclei are observed by AFM on the {0 0 1} faces of MnHg(SCN)4(C2H6OS)2 (MMTD) crystals. Measurements of the heights of steps and nuclei show the lowest value is equal to c/4. According to the interplanar distance modification established by Donney and Harker, the lowest height should be c/2. Appearance of the sub-layer growth is correlative with the crystal structure of MMTD. 相似文献
12.
Yifei Chen Qinggong SongHuiyu Yan Tong WeiXiong Yang 《Physica B: Condensed Matter》2012,407(3):519-522
Using first-principles calculations based on density functional theory, we investigated systematically the electronic structures and magnetic properties of Fe16N2 system and their unit cell volume dependence. It has been found that total magnetic moment increases as increasing unit cell volume of Fe16N2. In addition, it also has been found that the d electron number on Fe I, Fe II and Fe III atoms decreases as increasing unit cell volume and the local magnetic moment on Fe atoms increases with the decrease of d electron number. The present study provides a clear insight into the numerous conflicting experimental results on the magnetic properties of Fe16N2 system. 相似文献
13.
Guangtao Wang Minping Zhang Lihua Zheng Zongxian Yang 《Solid State Communications》2011,151(18):1231-1235
The electronic structure and magnetic properties of new layered oxyselenide compounds La2O3Fe2Se2 and La2O3Co2Se2 are studied by first-principles calculations. Our results indicate that both compounds are Mott-insulators with orbital ordering. The ground states of both compounds are the checkerboard antiferromagnetic states, which are different from the iron pnictide superconductors, although their structures are similar to those of the Fe-As-based superconductors. 相似文献
14.
The electronic states of lanthanide (Ln) doped CaGa2S4 are investigated by the molecular orbital calculations for a spherical cluster of LnCa8Ga12S24 using the FORTRAN program DVSCAT on the basis of the Discrete Variational method with Xα potentials (DV-Xα). In view of the SCF convergence, the Ln-doped lattice should contract to 85-90% of the mother crystal around the Ln atom for the lightweight lanthanides from Ce to Sm. On the other hand, the lattice contraction is very small for the heavyweight lanthanides, especially for Er, Tm and Yb in contrast to the generally known lanthanide contraction for Ln3+ ions. This is probably attributed to the effective charges of Ln atoms calculated here to be less than +1 for all lanthanides contrary to the chemically accepted value of +3. The energy level scheme of 4f and 5d related molecular orbitals is proposed for each Ln substituting Ca in CaGa2S4, showing that the optical processes relating to the 5d→4f transition must be complicated especially for the lightweight Ln-doped CaGa2S4. 相似文献
15.
Keitaro Tezuka Yue Jin Shan Kenji Ohoyama 《Journal of Physics and Chemistry of Solids》2007,68(11):2133-2137
Chromium(II) sulfide, Y2CrS4, prepared by a solid-state reaction of Y2S3 and CrS, showed an antiferromagnetic transition at 65 K. The neutron diffraction patterns at 10 and 90 K were both well refined with the space group Pca21. At 90 K, cell parameters were a=12.5518(13) Å, b=7.5245(8) Å, and c=12.4918(13) Å. At 10 K, magnetic peaks were observed, which could be indexed on the same unit cell. Magnetic moments of chromium ions were parallel to the b-axis and antiferromagnetically ordered in each set of the 4a sites. 相似文献
16.
Jun Mao 《Frontiers of Physics》2018,13(4):138118
Two-dimensional (2D) MoS2 is used as a catalyst or support and has received increased research interest because of its superior structural and electronic properties compared with those of bulk structures. In this article, we illustrate the active sites of 2D MoS2 and various strategies for enhancing its intrinsic catalytic activity. The recent advances in the use of 2D MoS2-based materials for applications such as thermocatalysis, electrocatalysis, and photocatalysis are discussed. We also discuss the future opportunities and challenges for 2D MoS2-based materials, in both fundamental research and industrial applications. 相似文献
17.
K. Wojciechowski J. Tobola R. Zybala 《Journal of Physics and Chemistry of Solids》2008,69(11):2748-2755
Undoped and p- and n-doped AgSbX2 (X=Se and Te) materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.To enlighten electron transport behaviours observed in AgSbSe2 and AgSbTe2 compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method as well as KKR with coherent potential approximation (KKR-CPA) for ordered (hypothetical AgX and SbX as well as AgSbX2 approximates) and disordered systems (Ag1−xSbxX), respectively. The calculated density of states in the considered structural cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric AgSbX2 compositions, but a small overlap between valence and conduction bands is still present. Such electronic structure behaviour well agrees with the semimetallic properties of the analyzed samples. 相似文献
18.
Baris Emre Ilker Dincer Eyup Duman Yalcin Elerman 《Solid State Communications》2011,151(24):2004-2007
The thermal and magnetothermal properties of La0.5Pr0.5Mn2Si2 and isostructural LaFe2Si2 intermetallic compounds in the temperature range 4.5-303 K are reported with and without applied magnetic field. The electronic, lattice, and magnetic contributions to the heat capacity of La0.5Pr0.5Mn2Si2 are determined and analyzed. We have determined and from heat capacity experiments; the values are in line with those from the magnetization measurements. We conclude that in order to observe the anomaly in the heat capacity data around in the system, the transition around should occur in a narrow temperature interval. 相似文献
19.
Electronic structure and magnetic and optical properties of double perovskite Bi2 FeCrO6 from first-principles investigation 下载免费PDF全文
Double perovskite Bi2 FeCrO6 , related with multiferroic BiFeO3 , is very interesting because of its strong ferroelectricity and high magnetic Curie temperature beyond room temperature. We investigate its electronic structure and magnetic and optical properties by using a full-potential density-functional method. Our optimization shows that it is a robust ferrimagnetic semiconductor. This nonmetallic phase is formed due to crystal field splitting and spin exchange splitting, in contrast to previous studies. Spin exchange constants and optical properties are calculated. Our Monte Carlo magnetic Curie temperature is 450 K, much higher than any previously calculated value and consistent with experimental results. Our study and analysis reveal that the main magnetic mechanism is an antiferromagnetic superexchange between Fe and Cr over the intermediate O atom. These results are useful in understanding such perovskite materials and exploring their potential applications. 相似文献
20.
T. Kaji H. Ohta Y. Inagaki M. Azuma 《Journal of Physics and Chemistry of Solids》2005,66(11):2068-2071
Submillimeter and millimeter wave ESR measurements of spin gap systems SrCu2(PO4)2 and PbCu2(PO4)2, which have four kinds of dimers, have been performed to investigate the magnetic properties of spin gap systems using the pulsed magnetic field up to 35T. The observed ESR spectra of powder sample SrCu2(PO4)2 show sharp and single peak in the temperature range from 4.2 to 80 K. The anisotropy of the g-values turned out to be very small compared to the usual anisotropic powder spectra of copper compounds. The dynamical properties will be discussed from the temperature dependence measurements. 相似文献