首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
In this study we develop optimization, decomposition, and heuristic procedures to design a unidirectional loop flow pattern along with the pickup and delivery station locations for unit load automated material handling vehicles. The layout of the facility is fixed, the edges on the boundary of the manufacturing cells are candidates to form the unidirectional loop flow path, and a set of nodes located at an intermediate point on each edge are candidates for pickup and delivery stations of the cell formed by those edges. The objective is to minimize the total loaded and empty vehicle trip distances. The empty vehicle dispatching policy underlying the model is the shortest trip distance first. A binary integer programming model describes the problem of determining the flow path and locations of the pickup and delivery stations in which we then provide a decomposition procedure based on a loop enumeration strategy coupled with a streamlined integer linear programming model. It is shown that only a small proportion of all loops have to be enumerated to reach an optimum. Therefore a truncated version of this algorithm should yield a good heuristic. Finally we propose a neighbourhood search heuristic method and report on its performance.  相似文献   

2.
The purpose of this paper is to develop a global optimization model, simplification schemes, and a heuristic procedure for the design of a shortcut-enhanced unidirectional loop aisle-network with pick-up and drop-off stations. The objective is to minimize the total loaded and empty trip distances. This objective is the main determinant for the fleet size of the vehicles, which in turn is the driver of the total life-cycle cost of vehicle-based unit-load transport systems. The shortcut considerably reduces the length of the trips while maintaining the simplicity of the system. The global model solves simultaneously for the loop design, stations’ locations and shortcut design. We then develop two simplifications each containing two serial phases. Phase-1 of the first simplification step focuses on both loaded and empty trips, while that of the second simplification focuses only on loaded trips. In phase-2, both designs are enhanced with a shortcut to minimize both loaded and empty trip distances. The quality and efficiency of the three alternative designs are tested for a set of problems with different layout size and product mix. While the solution time of the second simplification procedure is a small percentage of the global formulation, it generates satisfactory solutions. On this foundation, we then develop a heuristic procedure to replace phase-1 of the second simplification. The heuristic procedure is using ant colony system to generate feasible solutions and then we implement a local search algorithm to improve the results. The heuristic algorithm quickly generates close to optimal solutions for phase-1 of the second simplification. By applying phase-2 of the this second simplification on a set of loops generated by the heuristic, close to optimal solutions are also quickly obtained for the global model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号