共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new lattice hydrodynamic model based on
Nagatani's model [Nagatani T 1998 Physica A 261 599] is
presented by introducing the flow difference effect. The stability
condition for the new model is obtained by using the linear
stability theory. The result shows that considering the flow
difference effect leads to stabilization of the system compared
with the original lattice hydrodynamic model. The jamming
transitions among the freely moving phase, the coexisting phase, and
the uniform congested phase are studied by nonlinear analysis.
The modified KdV equation near the critical point is derived to
describe the traffic jam, and kink--antikink soliton solutions
related to the traffic density waves are obtained. The simulation
results are consistent with the theoretical analysis for the new
model. 相似文献
2.
Considering the effect of multiple flux difference, an extended lattice model is proposed to improve the stability of traffic flow. The stability condition of the new model is obtained by using linear stability theory. The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow. The nonlinear analysis is also conducted by using a reductive perturbation method. The modified KdV (mKdV) equation near the critical point is derived and the kink-antikink solution is obtained from the mKdV equation. Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably, which is in line with the analytical result. 相似文献
3.
4.
By introducing a flow difference effect, a modified lattice two-lane traffic flow model is proposed, which is proved to be capable of improving the stability of traffic flow. Both the linear stability condition and the kink-antikink solution derived from the modified Korteweg-de Vries (mKdV) equation are analyzed. Numerical simulations verify the theoretical analysis. Furthermore, the evolution laws under different disturbances in the metastable region are studied. 相似文献
5.
A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect 总被引:1,自引:0,他引:1 下载免费PDF全文
We present a new multi-anticipation lattice hydrodynamic model based on the traffic anticipation effect in the real world.Applying the linear stability theory,we obtain the linear stability condition of the model.Through nonlinear analysis,we derive the modified Korteweg-de Vries equation to describe the propagating behaviour of a traffic density wave near the critical point.The good agreement between the simulation results and the analytical results shows that the stability of traffic flow can be enhanced when the multi-anticipation effect is considered. 相似文献
6.
In this paper, a novel lattice hydrodynamic model is presented by accounting for the traffic interruption probability on a gradient highway. The stability condition can be obtained by the use of linear analysis. Linear analysis demonstrates that the traffic interruption probability and the slope will affect the stability region. Through nonlinear analysis, the mKdV equation is derived to describe the phase transition of traffic flow. Furthermore, the numerical simulation is carried out, and the results are consistent with the analytical results. Numerical results demonstrate that the traffic flow can be efficiently improved by accounting for the traffic interruption probability on a gradient highway. 相似文献
7.
A modified lattice hydrodynamic model of traffic flow is proposed by introducing the density difference between the leading and the following lattice. The stability condition of the modified model is obtained through the linear stability analysis. The results show that considering the density difference leads to the stabilization of the system. The Burgers equation and mKdV equation are derived to describe the density waves in the stable and unstable regions respectively. Numerical simulations show that considering the density difference not only could stabilize traffic flow but also makes the lattice hydrodynamic model more realistic. 相似文献
8.
By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered. 相似文献
9.
《Physics letters. A》2020,384(27):126668
Lane markings are painted on the ground to permit movement turns along traffic lanes at signalized junctions. Drivers have to follow the guidance to turn different directions to enter different downstream lanes. A new two-dimensional lattice hydrodynamic model is proposed to model the effects of a shared lane marking. The control method is used to analyze the model and new stability conditions are derived. A shared lane marking can divert traffic with different directions to enter different downstream lanes. Under different turning proportion, intensities of traffic at downstream vary. Results show that the traffic diversion could influence the flow stability. Shared lane marking is able to divert traffic flows to different downstream lanes. A feedback control signal is added in the proposed model. Revised stability conditions are obtained using the proposed control method. Numerical simulations present the results for the stability under different traffic conditions. 相似文献
10.
Based on the property of heterogeneous traffic flow, we in this Letter present a new car-following model. Applying the relationship between the micro and macro variables, a new dynamic model for heterogeneous traffic flow is obtained. The fundamental diagram and the jam density of the heterogeneous traffic flow consisting of bus and car are studied under three different conditions: (1) without any restrictions, (2) under the action of the traffic control policy that restrains some private cars and (3) using bus to replace the private cars restrained by the traffic control policy. The numerical results show that our model can describe some qualitative properties of the heterogeneous traffic flow consisting of bus and car, which verifies that our model is reasonable. 相似文献
11.
Sang-Hee Lee 《Physica A》2010,389(2):259-264
In order to understand how a heterogeneous landscape affects a predator-prey system, a spatially explicit lattice model consisting of predators, prey, grass, and landscape was constructed. The predators and preys randomly move on the lattice space and the grass grows in its neighboring site according to its growth probability. When predators and preys meet at the same site at the same time, a number of prey, equal to the number of predators are eaten. This rule was also applied to the relationship between the prey and grass. The predator (prey) could give birth to an offspring when it ate prey (grass), with a birth probability. When a predator or prey animal was initially introduced, or newly born, its health state was set at a given high value. This health state decreased by one with every time step. When the state of an animal decreased to less than zero, the animal died and was removed from the system. The heterogeneous landscape was characterized by parameter H, which controlled the heterogeneity according to the neutral model. The simulation results showed that H positively or negatively affected a predator’s survival, while its effect on prey and grass was less pronounced. The results can be understood by the disturbance of the balance between the prey and predator densities in the areas where the animals aggregated. 相似文献
12.
General solution of the modified Korteweg-de-Vries equation in the lattice hydrodynamic model 下载免费PDF全文
Traffic congestion is related to various density waves, which might be described by the nonlinear wave equations, such as the Burgers, Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (mKdV) equations. In this paper, the mKdV equations of four different versions of lattice hydrodynamic models, which describe the kink--antikink soliton waves are derived by nonlinear analysis. Furthermore, the general solution is given, which is applied to solving a new model --- the lattice hydrodynamic model with bidirectional pedestrian flow. The result shows that this general solution is consistent with that given by previous work. 相似文献
13.
Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes in an emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree factor. The drift D, which is one of the key parameters influencing the evacuation process, is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion, and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena. 相似文献
14.
In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change rate effect into account in a single lane. The linear stability condition of the new model is derived by control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect in delay feedback model. 相似文献
15.
A modified two-dimensional lattice hydrodynamic traffic flow model is proposed by incorporating the optimal current difference effect of leading vehicles. Phase transitions and critical phenomenon are investigated near the critical point both analytically and numerically. Based on the configuration of vehicles, it is shown that two distinct jamming transitions occur: conventional jamming transition to the kink jam and jamming transition to the chaotic jam. It is shown that consideration of optimal current difference effect stabilizes the traffic flow and suppresses the traffic jam efficiently for all possible configurations of vehicles on a square lattice. 相似文献
16.
A traffic flow lattice model considering relative current influence and its numerical simulation 下载免费PDF全文
<正>Based on Xue's lattice model,an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead.The linear stability condition of the presented model is obtained by employing the linear stability theory.The density wave is investigated analytically with the perturbation method.The results show that the occurrence of traffic jamming transitions can be described by the kink-antikink solution of the modified Korteweg-de Vries(mKdV) equation.The simulation results are in good agreement with the analytical results,showing that the stability of traffic flow can be enhanced when the relative current of next-nearest-neighbour sites ahead is considered. 相似文献
17.
The optimal driving speeds of the different vehicles may be different for the same headway. In the optimal velocity function of the optimal velocity (OV) model, the maximum speed is an important parameter determining the optimal driving speed. A vehicle with higher maximum speed is more willing to drive faster than that with lower maximum speed in similar situation. By incorporating the anticipation driving behavior of relative velocity and mixed maximum speeds of different percentages into optimal velocity function, an extended heterogeneous car-following model is presented in this paper. The analytical linear stable condition for this extended heterogeneous traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulted from the cooperation between anticipation driving behavior and heterogeneous maximum speeds in the optimal velocity function. The analytical and numerical results all demonstrate that strengthening driver's anticipation effect can improve the stability of heterogeneous traffic flow, and increasing the lowest value in the mixed maximum speeds will result in more instability, but increasing the value or proportion of the part already having higher maximum speed will cause different stabilities at high or low traffic densities. 相似文献
18.
The lattice hydrodynamic model is not only a simplified version of the macroscopic hydrodynamic model, but also connected with the microscopic car following model closely. The modified Korteweg-de Vries (mKdV) equation related to the density wave in a congested traffic region has been derived near the critical point since Nagatani first proposed it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not been studied, which has been investigated in detail for the car following model. We devote ourselves to obtaining the KdV equation from the original lattice hydrodynamic models and the KdV soliton solution to describe the traffic jam. Especially, we obtain the general soliton solution of the KdV equation and the mKdV equation. We review several lattice hydrodynamic models, which were proposed recently. We compare the modified models and carry out some analysis. Numerical simulations are conducted to demonstrate the nonlinear analysis results. 相似文献
19.
A lattice gas on 3 consisting of hard spheres with exclusions extending through third neighbors is proved to undergo a percolation transition. If spins with ferromagnetic couplings are attached to the spheres, spontaneous magnetization is proved to occur. This may provide a model for a ferrofluid, a system which exhibits spontaneous magnetization without crystalline order. Similar results are also obtained for an analogous model on 2. 相似文献
20.
In this paper,the lattice model is presented,incorporating not only site information about preceding cars but also relative currents in front.We derive the stability condition of the extended model by considering a small perturbation around the homogeneous flow solution and find that the improvement in the stability of traffic flow is obtained by taking into account preceding mixture traffic information.Direct simulations also confirm that the traffic jam can be suppressed efficiently by considering the relative currents ahead,just like incorporating site information in front.Moreover,from the nonlinear analysis of the extended models,the preceding mixture traffic information dependence of the propagating kink solutions for traffic jams is obtained by deriving the modified KdV equation near the critical point using the reductive perturbation method. 相似文献