首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we introduce the concept of stochastic HH-divergences based on convex stochastic processes. As an application, we propose some inequalities related to stochastic HH-divergences for convex stochastic processes. Our result extends HH-divergence in the class of f-divergence to the class of convex stochastic processes.  相似文献   

2.
The classI f β, βε(0, ∞], off-divergences investigated in this paper is defined in terms of a class of entropies introduced by Arimoto (1971,Information and Control,19, 181–194). It contains the squared Hellinger distance (for β=1/2), the sumI(Q 1‖(Q 1+Q 2)/2)+I(Q 2‖(Q 1+Q 2)/2) of Kullback-Leibler divergences (for β=1) and half of the variation distance (for β=∞) and continuously extends the class of squared perimeter-type distances introduced by Österreicher (1996,Kybernetika,32, 389–393) (for βε (1, ∞]). It is shown that\((I_{f_\beta } (Q_1 ,Q_2 ))^{\min (\beta ,1/2)}\) are distances of probability distributionsQ 1,Q 2 for β ε (0, ∞). The applicability of\(I_{f_\beta }\)-divergences in statistics is also considered. In particular, it is shown that the\(I_{f_\beta }\)-projections of appropriate empirical distributions to regular families define distribution estimates which are in the case of an i.i.d. sample of size'n consistent. The order of consistency is investigated as well.  相似文献   

3.
Two derivative Runge-Kutta methods are Runge-Kutta methods for problems of the form y = f(y) that include the second derivative y = g(y) = f(y)f(y) and were developed in the work of Chan and Tsai (Numer. Alg. 53, 171–194 2010). Explicit methods were considered and attention was given to the construction of methods that involve one evaluation of f and many evaluations of g per step. In this work, we consider trigonometrically fitted two derivative explicit Runge-Kutta methods of the general case that use several evaluations of f and g per step; trigonometrically fitting conditions for this general case are given. Attention is given to the construction of methods that involve several evaluations of f and one evaluation of g per step. We modify methods with stages up to four, with three f and one g evaluation and with four f and one g, evaluation based on the fourth and fifth order methods presented in Chan and Tsai (Numer. Alg. 53, 171–194 2010). We provide numerical results to demonstrate the efficiency of the new methods using four test problems.  相似文献   

4.
We consider parametric exponential families of dimension K on the real line. We study a variant of boundary crossing probabilities coming from the multi-armed bandit literature, in the case when the real-valued distributions form an exponential family of dimension K. Formally, our result is a concentration inequality that bounds the probability that B ψ (θ? n , θ*) ≥ f(t/n)/n, where θ* is the parameter of an unknown target distribution, θ? n is the empirical parameter estimate built from n observations, ψ is the log-partition function of the exponential family and B ψ is the corresponding Bregman divergence. From the perspective of stochastic multi-armed bandits, we pay special attention to the case when the boundary function f is logarithmic, as it is enables to analyze the regret of the state-of-the-art KL-ucb and KL-ucb+ strategies, whose analysis was left open in such generality. Indeed, previous results only hold for the case when K = 1, while we provide results for arbitrary finite dimension K, thus considerably extending the existing results. Perhaps surprisingly, we highlight that the proof techniques to achieve these strong results already existed three decades ago in the work of T. L. Lai, and were apparently forgotten in the bandit community. We provide a modern rewriting of these beautiful techniques that we believe are useful beyond the application to stochastic multi-armed bandits.  相似文献   

5.
In this paper, the parametric matrix equation A(p)X = B(p) whose elements are linear functions of uncertain parameters varying within intervals are considered. In this matrix equation A(p) and B(p) are known m-by-m and m-by-n matrices respectively, and X is the m-by-n unknown matrix. We discuss the so-called AE-solution sets for such systems and give some analytical characterizations for the AE-solution sets and a sufficient condition under which these solution sets are bounded. We then propose a modification of Krawczyk operator for parametric systems which causes reduction of the computational complexity of obtaining an outer estimation for the parametric united solution set, considerably. Then we give a generalization of the Bauer-Skeel and the Hansen-Bliek-Rohn bounds for enclosing the parametric united solution set which also enables us to reduce the computational complexity, significantly. Also some numerical approaches based on Gaussian elimination and Gauss-Seidel methods to find outer estimations for the parametric united solution set are given. Finally, some numerical experiments are given to illustrate the performance of the proposed methods.  相似文献   

6.
Parametric polynomial surface is a fundamental element in CAD systems. Since the most of the classic minimal surfaces are represented by non-parametric polynomial, it is interesting to study the minimal surfaces represented in parametric polynomial form. Recently,Ganchev presented the canonical principal parameters for minimal surfaces. The normal curvature of a minimal surface expressed in these parameters determines completely the surface up to a position in the space. Based on this result, in this paper, we study the bi-quintic isothermal minimal surfaces. According to the condition that any minimal isothermal surface is harmonic,we can acquire the relationship of some control points must satisfy. Follow up, we obtain two holomorphic functions f(z) and g(z) which give the Weierstrass representation of the minimal surface. Under the constrains that the minimal surface is bi-quintic, f(z) and g(z) can be divided into two cases. One case is that f(z) is a constant and g(z) is a quadratic polynomial, and another case is that the degree of f(z) and g(z) are 2 and 1 respectively. For these two cases,we transfer the isothermal parameter to canonical principal parameter, and then compute their normal curvatures and analyze the properties of the corresponding minimal surfaces. Moreover,we study some geometric properties of the bi-quintic harmonic surfaces based on the B′ezier representation. Finally, some numerical examples are demonstrated to verify our results.  相似文献   

7.
A möbius bilipschitz mapping is an η-quasimöbius mapping with the linear distortion function η(t) = Kt. We show that if an open Jordan arc γ ? C with distinct endpoints a and b is homogeneous with respect to the family FK of möbius bilipschitz automorphisms of the sphere C with K specified then γ has bounded turning RT(γ) in the sense of Rickman and, consequently, γ is a quasiconformal image of a rectilinear segment. The homogeneity of γ with respect to FK means that for all x, y ∈ γ {a, b} there exists fFK with f(γ) = γ and f(x) = y. In order to estimate RT(γ) from above, we introduce the condition BR(δ) of bounded rotation of γ, and then the explicit bound depends only on K and δ.  相似文献   

8.
In this note, we study the admissible meromorphic solutions for algebraic differential equation fnf' + Pn?1(f) = R(z)eα(z), where Pn?1(f) is a differential polynomial in f of degree ≤ n ? 1 with small function coefficients, R is a non-vanishing small function of f, and α is an entire function. We show that this equation does not possess any meromorphic solution f(z) satisfying N(r, f) = S(r, f) unless Pn?1(f) ≡ 0. Using this result, we generalize a well-known result by Hayman.  相似文献   

9.
The Baur-Strassen method implies L(?f) ? 4L(f), where L(f) is the complexity of computing a rational function f by arithmetic circuits, and ?f is the gradient of f. We show that L(? f) ? 3L(f) + n, where n is the number of variables in f. In addition, the depth of a circuit for the gradient is estimated.  相似文献   

10.
Block sensitivity (bs(f)), certificate complexity (C(f)) and fractional certificate complexity (C*(f)) are three fundamental combinatorial measures of complexity of a boolean function f. It has long been known that bs(f) ≤ C*(f) ≤ C(f) = O(bs(f)2). We provide an infinite family of examples for which C(f) grows quadratically in C*(f) (and also bs(f)) giving optimal separations between these measures. Previously the biggest separation known was \(C(f) = C*(f)^{\log _{4,5} 5}\). We also give a family of examples for which C*(f)= Ω (bs(f)3/2).These examples are obtained by composing boolean functions in various ways. Here the composition fog of f with g is obtained by substituting for each variable of f a copy of g on disjoint sets of variables. To construct and analyse these examples we systematically investigate the behaviour under function composition of these measures and also the sensitivity measure s(f). The measures s(f), C(f) and C*(f) behave nicely under composition: they are submultiplicative (where measure m is submultiplicative if m(fog) ≤ m(f)m(g)) with equality holding under some fairly general conditions. The measure bs(f) is qualitatively different: it is not submultiplicative. This qualitative difference was not noticed in the previous literature and we correct some errors that appeared in previous papers. We define the composition limit of a measure m at function f, m lim(f) to be the limit as k grows of m(f (k))1/k , where f (k) is the iterated composition of f with itself k-times. For any function f we show that bs lim(f) = (C*)lim(f) and characterize s lim(f); (C*)lim(f), and C lim(f) in terms of the largest eigenvalue of a certain set of 2×2 matrices associated with f.  相似文献   

11.
In this paper we consider the convolutionmodel Z = X + Y withX of unknown density f, independent of Y, when both random variables are nonnegative. Our goal is to estimate the unknown density f of X from n independent identically distributed observations of Z, when the law of the additive process Y is unknown. When the density of Y is known, a solution to the problem has been proposed in [17]. To make the problem identifiable for unknown density of Y, we assume that we have access to a preliminary sample of the nuisance process Y. The question is to propose a solution to an inverse problem with unknown operator. To that aim, we build a family of projection estimators of f on the Laguerre basis, well-suited for nonnegative random variables. The dimension of the projection space is chosen thanks to a model selection procedure by penalization. At last we prove that the final estimator satisfies an oracle inequality. It can be noted that the study of the mean integrated square risk is based on Bernstein’s type concentration inequalities developed for random matrices in [23].  相似文献   

12.
We prove generalized Hyers-Ulam–Rassias stability of the cubic functional equation f(kx+y)+f(kx?y)=k[f(x+y)+f(x?y)]+2(k 3?k)f(x) for all \(k\in \Bbb{N}\) and the quartic functional equation f(kx+y)+f(kx?y)=k 2[f(x+y)+f(x?y)]+2k 2(k 2?1)f(x)?2(k 2?1)f(y) for all \(k\in \Bbb{N}\) in non-Archimedean normed spaces.  相似文献   

13.
Let f(n) be the largest integer such that every poset on n elements has a 2-dimensional subposet on f(n) elements. What is the asymptotics of f(n)? It is easy to see that f(n) = n 1/2. We improve the best known upper bound and show f(n) = O (n 2/3). For higher dimensions, we show \(f_{d}(n)=\O \left (n^{\frac {d}{d + 1}}\right )\), where f d (n) is the largest integer such that every poset on n elements has a d-dimensional subposet on f d (n) elements.  相似文献   

14.
We establish some assertions of Tauberian and Abelian types which enable us to find connections between the asymptotic properties of the Laplace transform at infinity and the asymptotics of the corresponding densities of rapidly decaying distributions (at infinity or in some neighborhood of zero). As applications of our Tauberian type theorems we present asymptotics for the density f (α,ρ)(x) of “extreme” stable laws with parameters (α, ρ) for ρ = ±1 and x lying in the domain of rapid decay of f (α,ρ)(x). This asymptotics had been found in [1–5] by a more complicated method.  相似文献   

15.
We present necessary and sufficient conditions on planar compacta K and continuous functions f on K in order that f generate the algebras P(K), R(K), A(K) or C(K). We also unveil quite surprisingly simple examples of non-polynomial convex compacta K ? C and fP(K) with the property that fP(K) is a homeomorphism of K onto its image, but for which f ?1 ? P(f(K)). As a consequence, such functions do not admit injective holomorphic extensions to the interior of the polynomial convex hull \(\widehat K\). On the other hand, it is shown that the restriction f*|G of the Gelfand-transform f* of an injective function fP(K) is injective on every regular, bounded complementary component G of K. A necessary and sufficient condition in terms of the behaviour of f on the outer boundary of K is given in order that f admit a holomorphic injective extension to \(\widehat K\). We also include some results on the existence of continuous logarithms on punctured compacta containing the origin in their boundary.  相似文献   

16.
We present simple proofs of a result of L.D. Pustylnikov extending to nonautonomous dynamics the Siegel theorem of linearization of analytic mappings. We show that if a sequence f n of analytic mappings of C d has a common fixed point f n (0) = 0, and the maps f n converge to a linear mapping A∞ so fast that
$$\sum\limits_n {{{\left\| {{f_m} - {A_\infty }} \right\|}_{L\infty \left( B \right)}} < \infty } $$
$${A_\infty } = diag\left( {{e^{2\pi i{\omega _1}}},...,{e^{2\pi i{\omega _d}}}} \right)\omega = \left( {{\omega _1},...,{\omega _q}} \right) \in {\mathbb{R}^d},$$
then f n is nonautonomously conjugate to the linearization. That is, there exists a sequence h n of analytic mappings fixing the origin satisfying
$${h_{n + 1}} \circ {f_n} = {A_\infty }{h_n}.$$
The key point of the result is that the functions hn are defined in a large domain and they are bounded. We show that
$${\sum\nolimits_n {\left\| {{h_n} - Id} \right\|} _{L\infty (B)}} < \infty .$$
We also provide results when f n converges to a nonlinearizable mapping f∞ or to a nonelliptic linear mapping. In the case that the mappings f n preserve a geometric structure (e. g., symplectic, volume, contact, Poisson, etc.), we show that the hn can be chosen so that they preserve the same geometric structure as the f n . We present five elementary proofs based on different methods and compare them. Notably, we consider the results in the light of scattering theory. We hope that including different methods can serve as an introduction to methods to study conjugacy equations.
  相似文献   

17.
Let(T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote byω(x,f) and P(f) the ω-limit set of x under f and the set of periodic points of,respectively. Write Ω(x,f) = {y| there exist a sequence of points x_k E T and a sequence of positive integers n_1 n_2 … such that lim_(k→∞)x_k=x and lim_(k→∞)f~(n_k)(x_k) =y}. In this paper, we show that the following statements are equivalent:(1) f is equicontinuous.(2) ω(x, f) = Ω(x,f) for any x∈T.(3) ∩_(n=1)~∞f~n(T) = P(f),and ω(x,f)is a periodic orbit for every x ∈ T and map h : x→ω(x,f)(x ET)is continuous.(4) Ω(x,f) is a periodic orbit for any x∈T.  相似文献   

18.
Motivated by Hampel’s birds migration problem, Groeneboom, Jongbloed, and Wellner [7] established the asymptotic distribution theory for the nonparametric Least Squares and Maximum Likelihood estimators of a convex and decreasing density, g 0, at a fixed point t 0 > 0. However, estimation of the distribution function of the birds’ resting times involves estimation of g0 at 0, a boundary point at which the estimators are not consistent.In this paper, we focus on the Least Squares estimator, \(\tilde g_n \). Our goal is to show that consistent estimators of both g 0(0) and g0(0) can be based solely on \(\tilde g_n \). Following the idea of Kulikov and Lopuhaä [14] in monotone estimation, we show that it suffices to take \(\tilde g_n \)(n ?α ) and \(\tilde g'_n \)(n ?α ), with α ∈ (0, 1/3). We establish their joint asymptotic distributions and show that α = 1/5 should be taken as it yields the fastest rates of convergence.  相似文献   

19.
The paper is devoted to the normal families of meromorphic functions and shared functions. Generalizing a result of Chang (2013), we prove the following theorem. Let h (≠≡ 0,∞) be a meromorphic function on a domain D and let k be a positive integer. Let F be a family of meromorphic functions on D, all of whose zeros have multiplicity at least k + 2, such that for each pair of functions f and g from F, f and g share the value 0, and f(k) and g(k) share the function h. If for every fF, at each common zero of f and h the multiplicities mf for f and mh for h satisfy mfmh + k + 1 for k > 1 and mf ≥ 2mh + 3 for k = 1, and at each common pole of f and h, the multiplicities nf for f and nh for h satisfy nfnh + 1, then the family F is normal on D.  相似文献   

20.
Let f:M~d→M~d(d≥2) be a diffeomorphism on a compact C~∞ manifold on M.If a diffeomorphism f belongs to the C~1-interior of the set of all diffeomorphisms having the barycenter property,then f is Ω-stable.Moreover,if a generic diffeomorphism f has the barycenter property,then f is Ω-stable.We also apply our results to volume preserving diffeomorphisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号