首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 666 毫秒
1.
Understanding the mechanisms controlling the spin coherence of electrons in semiconductors is essential for designing structures for quantum computing applications. Using a pulsed electron paramagnetic resonance spectrometer, we measure spin echoes and deduce a spin coherence time (T2) of up to 3 mus for an ensemble of free two-dimensional electrons confined in a Si/SiGe quantum well. The decoherence can be understood in terms of momentum scattering causing fluctuating effective Rashba fields. Further confining the electrons into a nondegenerate (other than spin) ground state of a quantum dot can be expected to eliminate this decoherence mechanism.  相似文献   

2.
No Heading A hydrodynamic analogy for quantum mechanics is used to develop a phase-space representation in terms of a quasi-probability distribution function. Averages over phase space using this approach agree with the usual expectation values of quantum mechanics for a certain class of observables. We also derive the equations of motion that particles in an ensemble would have in phase space in order to mimic the time development of this probability distribution, thus giving the position and momentum of particles in the ensemble as a function of time. The equations of motion separate into position and momentum components. The position component reproduces the de Broglie-Bohm equation of motion. As a simple example, we calculate the phase space trajectories and entropy of a free particle wave packet.  相似文献   

3.
A quantum algorithm is presented for modeling the time evolution of a continuous field governed by the nonlinear Burgers equation in one spatial dimension. It is a microscopic-scale algorithm for a type-II quantum computer, a large lattice of small quantum computers interconnected in nearest neighbor fashion by classical communication channels. A formula for quantum state preparation is presented. The unitary evolution is governed by a conservative quantum gate applied to each node of the lattice independently. Following each quantum gate operation, ensemble measurements over independent microscopic realizations are made resulting in a finite-difference Boltzmann equation at the mesoscopic scale. The measured values are then used to re-prepare the quantum state and one time step is completed. The procedure of state preparation, quantum gate application, and ensemble measurement is continued ad infinitum. The Burgers equation is derived as an effective field theory governing the behavior of the quantum computer at its macroscopic scale where both the lattice cell size and the time step interval become infinitesimal. A numerical simulation of shock formation is carried out and agrees with the exact analytical solution.  相似文献   

4.
We propose a new approach to the measurement of a single spin state, based on nuclear magnetic resonance (NMR) techniques and inspired by the coherent control over many-body systems envisaged by quantum information processing. A single target spin is coupled via the magnetic dipolar interaction to a large ensemble of spins. Applying radio frequency pulses, we can control the evolution so that the spin ensemble reaches one of two orthogonal states whose collective properties differ depending on the state of the target spin and are easily measured. We first describe this measurement process using quantum gates; then we show how equivalent schemes can be defined in terms of the Hamiltonian and thus implemented under conditions of real control, using well established NMR techniques. We demonstrate this method with a proof of principle experiment in ensemble liquid state NMR and simulations for small spin systems.  相似文献   

5.
6.
We report some improvements to the gradient ascent pulse engineering (GRAPE) algorithm for optimal control of spin ensembles and other quantum systems. These include more accurate gradients, convergence acceleration using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton algorithm as well as faster control derivative calculation algorithms. In all test systems, the wall clock time and the convergence rates show a considerable improvement over the approximate gradient ascent.  相似文献   

7.
Using Cs atom zero-field wavefunctions from a kind of atomic potential model, and the mean value of z-component of spin angular momentum (Sz) in each Stark state, we numerically investigate the approximate good quantum numbers in Cs Stark states. Our results quantitatively confirm the concept that mt and ms, can be taken as the approximate good quantum numbers in two cases, except for some Stark states in a few special field points or ranges; however we also find that mt and ms, cannot be treated as the approximate good quantum numbers for these special Stark states.  相似文献   

8.
In this paper we study the gravitational effects induced by the quantum fluctuations of the energy–momentum tensor of scalar fields. Our treatment is based on the two-point correlation function of this operator. In a large N limit, this treatment constitutes the next contribution after the semiclassical treatment. The specific example we study are the gravitational interactions between outgoing configurations giving rise to Hawking radiation and in-falling configurations. Even when the latter are in vacuum state, the interactions grow boundlessly upon approaching the horizon. Their main effect is to wash out the trans-Planckian correlations which existed in a given background geometry. When evaluated in the lowest order, these interactions express themselves in terms of a stochastic ensemble of metric fluctuations. The propagation of Hawking radiation in this ensemble resembles that of sound propagation in a random medium. The analogies with acoustic black holes are manifest even though certain features differ.  相似文献   

9.
We experimentally and theoretically demonstrate the purity (polarization) control of qubits entangled with multiple spins, using induced dephasing in nuclear magnetic resonance setups to simulate repeated quantum measurements. We show that one may steer the qubit ensemble towards a quasiequilibrium state of a certain purity by choosing suitable time intervals between dephasing operations. These results demonstrate that repeated dephasing at intervals associated with the anti-Zeno regime leads to ensemble purification, whereas those associated with the Zeno regime lead to ensemble mixing.  相似文献   

10.
S. M. Roy 《Pramana》1998,51(5):597-602
We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics  相似文献   

11.
在由三个经典控制场驱动的五能级三重(?)型原子系综与三个多模量子光场相互作用的系统中,得到了该系统的极化子.利用求得的极化子结果研究了光量子态存储到原子激发态,或从原子系综中释放出光量子信息.在释放过程中,通过绝热调节控制场的Rabi频率,能得到纠缠光子态.尤其是在一定条件下,能利用该系统能制备一类W态,这类态在量子信息处理中有潜在的应用.  相似文献   

12.
覃晓  高军毅 《中国物理 B》2012,21(2):20303-020303
We establish a reconstruction approach for the rotational quantum state of linear molecules possessing a magnetic manifold. Our approximate method contains an iteration with generalized matrix inverses, processing the tomographic integral of the time-dependent molecular-axis distribution in a polar angle. As shown in a simulated example for an alignment state, the density matrix is determined in a high fidelity. An analytic tomographic formula is also derived for the symmetric top rotation. The state coherent in the quantum space of both the angular momentum and its magnetic projection can be approximately retrieved from the observable time-resolved solid-angle distribution of the molecular axis.  相似文献   

13.
The principle of ergodicity of the quantum theory has been used for elaboration of a new technique for numerical simulation of the Wigner function of open dissipative quantum systems. With this purpose the density matrix of a quantum system is represented via averaging over the ensemble of quantum states in time intervals instead of averaging over the ensemble of stochastic variables. It is shown that this approach leads to new approximate expressions for quantum distributions in the phase space, in particular, Wigner functions for systems localized in the region of classical phase trajectories. As an application, the Wigner functions are calculated for the process of intracavity second harmonic generation in the region of Hopf bifurcations.  相似文献   

14.
We present a new procedure for quantum state reconstruction based on weak continuous measurement of an ensemble average. By applying controlled evolution to the initial state, new information is continually mapped onto the measured observable. A Bayesian filter is then used to update the state estimate in accordance with the measurement record. This generalizes the standard paradigm for quantum tomography based on strong, destructive measurements on separate ensembles. This approach to state estimation induces minimal perturbation of the measured system, giving information about observables whose evolution cannot be described classically in real time and opening the door to new types of quantum feedback control.  相似文献   

15.
The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.  相似文献   

16.
A solid state quantum circuit where an ensemble of self-assembled quantum dots in a microdisk cavity served as long-lived quantum light memory, is investigated. It is shown that via laser coupling Raman process, the coherent transfer between the light field (qubits) and the ensemble spin states of the quantum dots can be efficient and fast. The coherence properties of the system are analyzed, which enables us to obtain a long coherence time.  相似文献   

17.
Applying an improved approximation scheme to the centrifugal term, the approximate analytical solutions of the Schrödinger equation for the Eckart potential are presented. Bound state energy eigenvalues and the corresponding eigenfunctions are obtained in closed forms for the arbitrary radial and angular momentum quantum numbers, and different values of the screening parameter. The results are compared with those obtained by the other approximate and numerical methods. It is shown that the present method is systematic, more efficient and accurate.  相似文献   

18.
A new ensemble interpretation of quantum mechanics is proposed according to which the ensemble associated to a quantum state really exists: it is the ensemble of all the systems in the same quantum state in the universe. Individual systems within the ensemble have microscopic states, described by beables. The probabilities of quantum theory turn out to be just ordinary relative frequencies probabilities in these ensembles. Laws for the evolution of the beables of individual systems are given such that their ensemble relative frequencies evolve in a way that reproduces the predictions of quantum mechanics.  相似文献   

19.
当前,人们对量子混沌系统的能谱统计性质的了解比对其波函数性质的了解多得多.通过研究哈密顿系统初始状态为相干量子状态时的传播性质、位置与动量的平均值随时间的演化及涨落的变化性质,将给出系统波函数及相空间分布的信息,并自然给出量子、经典的对应.从理论形式上给出了哈密顿系统状态的相干态表示. So far the statistical fluctuation property of the energy spectrum and its rigidity for quantum chaotic systems are known much more than the wave functions. The study of the propagating property of a quantum state of a Hamiltonian system with its initial state being a coherent state, the time evolution of the mean position and mean momentum, as well as the variation of the position and momentum fluctuation of the system will offer information about the wave function and the phase...  相似文献   

20.
We study the Coulomb-Fröhlich model on a triangular lattice, looking in particular at states with angular momentum. We examine a simplified model of crab bipolarons with angular momentum by projecting onto the low energy subspace of the Coulomb-Fröhlich model with large phonon frequency. Such a projection is consistent with large long-range electron-phonon coupling and large repulsive Hubbard U. Significant differences are found between the band structure of singlet and triplet states: The triplet state (which has a flat band) is found to be significantly heavier than the singlet state (which has mass similar to the polaron). We test whether the heavier triplet states persist to lower electron-phonon coupling using continuous time quantum Monte Carlo (QMC) simulation. The triplet state is both heavier and larger, demonstrating that the heavier mass is due to quantum interference effects on the motion. We also find that retardation effects reduce the differences between singlet and triplet states, since they reintroduce second order terms in the hopping into the inverse effective mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号