首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coherently driven atomic gases inside optical cavities hold great promise for generating rich dynamics and exotic states of matter. It was shown recently that an exotic topological superradiant state exists in a two-component degenerate Fermi gas coupled to a cavity, where local order parameters coexist with global topological invariants. In this work, we characterize in detail various properties of this exotic state, focusing on the feedback interactions between the atoms and the cavity field. In particular, we demonstrate that cavity-induced interband coupling plays a crucial role in inducing the topological phase transition between the conventional and topological superradiant states. We analyze the interesting signatures in the cavity field left by the closing and reopening of the atomic bulk gap across the topological phase boundary and discuss the robustness of the topological superradiant state by investigating the steady-state phase diagram under various conditions. Furthermore, we consider the interaction effect and discuss the interplay between the pairing order in atomic ensembles and the superradiance of the cavity mode. Our work provides many valuable insights into the unique cavity–atom hybrid system under study and is helpful for future experimental exploration of the topological superradiant state.  相似文献   

2.
An infinite waveguide with a nonuniformity, a segment of finite length with spin–orbit coupling, is considered in the case when the Rashba and Dresselhaus parameters are identical. Analytical expressions have been derived in the single-mode approximation for the conductance of the system for an arbitrary initial spin state. Based on numerical calculations with several size quantization modes, we have detected and described the conductance dips arising when the waves are localized in the nonuniformity due to the formation of an effective potential well in it. We show that allowance for the evanescent modes under carrier spin precession in an effective magnetic field does not lead to a change in the direction of the average spin vector at the output of the system.  相似文献   

3.
4.
Spin remagnetization modes in paramagnetic materials with Rashba and Dresselhaus spin–orbit interaction are studied by analytically solving the kinetic equations for the spin-density matrix. These eigenmodes, which are induced by an in-plane electric field, lead to a rotation of the spin magnetic moment. The specific character of the spin remagnetization modes depends on the details of the excitation mechanism. By applying the approach to another system, namely to a model for graphene, pseudospin excitations are identified.  相似文献   

5.
6.
The recently proposed spin-adapted time-dependent density functional theory (S-TD-DFT) is extended to the relativistic domain for fine-structure splittings of excited states of open-shell systems. Scalar-relativistic effects are treated to infinite order via the spin-free (sf) part of the exact two-component (X2C) Hamiltonian, whereas the spin–orbit couplings (SOC) between the scalar-excited states are treated perturbatively via an effective one-electron spin–orbit operator derived from the same X2C Hamiltonian. The calculated results for prototypical open-shell systems containing heavy elements reveal that the composite approach sf-X2C-S-TD-DFT-SOC is very promising. The fine-structure splitting of a spatially degenerate ground state can also be described properly by taking a non-degenerate excited state as the reference.  相似文献   

7.
Starting from effective mass Hamiltonian, we systematically investigate the symmetry of low-dimensional structures with spin–orbit interaction and transverse magnetic field. The position-dependent potentials are assumed to be space symmetric, which is ever-present in theory and experiment research. By group theory, we analyze degeneracy in different cases. Spin–orbit interaction makes the transition between Zeeman sub-levels possible, which is originally forbidden within dipole approximation. However, a transition rule given in this paper for the first time shows that the transition between some levels is forbidden for space symmetric potentials.  相似文献   

8.
We report a kind of kink-like breathers in one-dimensional Bose–Einstein condensates (BECs) with helicoidal spin–orbit coupling (SOC), on whose two sides the background densities manifest obvious difference (called kink amplitude). The kink amplitude and shape of breather can be adjusted by the strength and period of helicoidal SOC, and its atomic number in two components exchanges periodically with time. The SOC has similar influence on the kink amplitude and the exchanged atomic number, especially when the background wave number is fixed. It indicates that the oscillating intensity of breather can be controlled by adjusting initial kink amplitude. Our work showcases the great potential of realizing novel types of breathers through SOC, and deepens our understanding on the formation mechanisms of breathers in BECs.  相似文献   

9.
We consider a new effect induced by spin–orbit coupling in a two-dimensional electron gas confined in a semiconductor quantum well, i.e. the possibility of spin current generation by fluctuating random Rashba spin–orbit interaction, with the corresponding mean value of the interaction being equal to zero. Our main results suggest that – in contrast to the spatially uniform Rashba spin–orbit interaction – the spin Hall effect does not vanish for typical disorder strengths. We also point out some other possibilities of using such a random Rashba coupling for the generation of spin density and spin current in two-dimensional nonmagnetic structures.  相似文献   

10.
We establish a general formalism of the bulk spin polarization (BSP) and the current-based spin polarization (CSP) for mesoscopic ferromagnetic and spin–orbit interaction (SOI) semiconducting systems. Based on this formalism, we reveal the basic properties of BSP and CSP and their relationships. The BSP describes the intrinsic spin polarized properties of devices. The CSP depends on both intrinsic parameters of device and the incident current. For the non-spin-polarized incident current with the in-phase spin-phase coherence, CSP equals to BSP. We give analytically the BSP and CSP of several typical nanodevice models, ferromagnetic nanowire, Rashba nanowire and rings. These results provide basic physical behaviors of BSP and CSP and their relationships.  相似文献   

11.
I show that, in commensurate Néel antiferromagnetic conductors with inversion symmetry, the substantial momentum dependence of the Zeeman term survives strong spin–orbit coupling and substantial magnetic anisotropy. I illustrate this by a simple example.  相似文献   

12.
13.
We investigate Bose–Einstein condensates in concentrically coupled annular traps with spin–orbit coupling and rotation. The ground state wave functions are computed by minimizing the Gross–Pitaevskii energy functional, and the combined effects of system?s parameters, especially the spin–orbit coupling and rotating, are investigated. The results show that for a finite fixed spin–orbit coupling, with increasing the angular frequency of rotation, the system is always in phase coexistence. Moreover, phase transitions between different ground state phases can be induced not only by spin–orbit coupling, but also rotation, which resembles very much the one where the s-wave interactions are varied.  相似文献   

14.
《Physics letters. A》2014,378(26-27):1888-1892
Using the transfer matrix method, we study the electron transport through a single-layer graphene superlattice with alternating layers of ferromagnetic and normal regions with Rashba spin–orbit coupling. We show that the transport properties of the system depend strongly on the superlattice parameters. As another result, Rashba spin–orbit coupling manifests to be of crucial importance in controlling the transmission probabilities and Giant Magneto Resistance (GMR).  相似文献   

15.
By employing non-equilibrium Green's function method, the mesoscopic Fano effect modulated by Rashba spin–orbit (SO) coupling and external magnetic field has been elucidated for electron transport through a hybrid system composed of a quantum dot (QD) and an Aharonov–Bohm (AB) ring. The results show that the orientation of the Fano line shape is modulated by the Rashba spin–orbit interaction kRLkRL variation, which reveals that the Fano parameter q will be extended to a complex number, although the system maintains time-reversal symmetry (TRS) under the Rashba SO interaction. Furthermore, it is shown that the modulation of the external magnetic field, which is applied not only inside the frame, but also on the QD, leads to the Fano resonance split due to Zeeman effect, which indicates that the hybrid is an ideal candidate for the spin readout device.  相似文献   

16.
In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin–orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin–orbit field which is responsible for the generation of spin current. The interplay between two spin–orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strength of any one of two spin–orbit couplings together with on-site energy, provided the other is known.  相似文献   

17.
刘乃清  黄立捷  王瑞强  胡梁宾 《中国物理 B》2016,25(2):27201-027201
We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some parameter regions the magnitude of the current-induced nonequilibrium spin polarization density in such structures will increase(or decrease) with the decrease(or increase) of the charge current density, in contrast to that found in normal spin–orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current-induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.  相似文献   

18.
Magnetization of anisotropic quantum dots in the presence of the Rashba spin–orbit interaction has been studied for three and four interacting electrons in the dot for non-zero values of the applied magnetic field. We observe unique behaviors of magnetization that are direct reflections of the anisotropy and the spin–orbit interaction parameters independently or concurrently. In particular, there are saw-tooth structures in the magnetic field dependence of the magnetization, as caused by the electron–electron interaction, that are strongly modified in the presence of large anisotropy and high strength of the spin–orbit interactions. We also report the temperature dependence of magnetization that indicates the temperature beyond which these structures due to the interactions disappear. Additionally, we found the emergence of a weak sawtooth structure in magnetization for three electrons in the high anisotropy and large spin–orbit interaction limit that was explained as a result of merging of two low-energy curves when the level spacings evolve with increasing values of the anisotropy and the spin–orbit interaction strength.  相似文献   

19.
B Gisi  S Sakiroglu  &#  Sokmen 《中国物理 B》2016,25(1):17103-017103
In this work, we investigate the effects of interplay of spin–orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin–orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin–orbit couplings as well as the magnitude and the orientation angle of the external magnetic field.  相似文献   

20.
We study theoretically the minimal conductivity of monolayer graphene in the presence of Rashba spin–orbit coupling. The Rashba spin–orbit interaction causes the low-energy bands to undergo trigonal-warping deformation and for energies smaller than the Lifshitz energy, the Fermi circle breaks up into parts, forming four separate Dirac cones. We calculate the minimal conductivity for an ideal strip of length L and width W within the Landauer–Büttiker formalism in a continuum and in a tight binding model. We show that the minimal conductivity depends on the relative orientation of the sample and the probing electrodes due to the interference of states related to different Dirac cones. We also explore the effects of finite system size and find that the minimal conductivity can be lowered compared to that of an infinitely wide sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号