首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Effect of Lorentz forces on natural convection in a complex shaped cavity filled with nanoliquid immersed in porous medium is investigated by means of Control volume based finite element method (CVFEM). Non Darcy model is taken into account for porous media. The working fluid is Fe3O4 –water and its viscosity considered as function of magnetic field. Figures are illustrated for different values of Darcy number (Da), Fe3O4 -water volume fraction (?), Rayleigh (Ra) and Hartmann (Ha) numbers. Results depict that enhancing in Lorentz forces results in reduce in nanofluid motion and increase the thickness of thermal boundary. Convective heat transfer enhances with rise of Darcy number.  相似文献   

2.
The onset of double-diffusive (thermosolutal) convection in horizontal porous layer saturated with an incompressible couple stress nanofluid saturated is studied with thermal conductivity and viscosity dependent on the nanoparticle volume fraction. To represent the momentum equation for porous media, a modified Darcy-Maxwell nanofluid model incorporating the effects of Brownian motion and thermophoresis has been used. The thermal energy equation includes regular diffusion and cross diffusion (Soret thermo-diffusion and Dufour diffuso-thermal) terms. A linear stability analysis depends on the normal mode technique and the onset criterion for stationary and oscillatory convection is derived analytically. The nonlinear theory based on the representation of the Fourier series method is applied to capture the behavior of heat and mass transfer. It is found that the couple stress parameter enhances the stability of the system in both the stationary and oscillatory convection modes. The viscosity ratio and conductivity ratio both enhance heat and mass transfer. Transient Nusselt number is found to be oscillatory when time is small. However, when time becomes very large, all the three transient Nusselt number values approach to their steady state values.  相似文献   

3.
In this article, Lattice Boltzmann method (LBM) has been applied to investigate the influences of magnetic field and heat sources on water based nanofluid natural convection inside a porous cavity with three square heat sources. Koo–Kleinstreuer–Li (KKL) model is applied to study Brownian motion impact on nanofluid flow. Effects of Rayleigh number (Ra), Darcy number (Da), nanofluid volume fraction (ϕ), and Hartmann number (Ha) on heat transfer characteristics are analyzed. From the obtained results we observe a decrease in the temperature gradient with increasing Ha; while quite the opposite effect is true with increasing Da and Ra. In the absence of magnetic field, for higher values of Darcy and Rayleigh numbers, thermal plumes are generated and the temperature gradient is enhanced. Moreover, small eddies are generated near the vertical centerline. However, in the presence of magnetic field, the number of thermal plumes decreases.  相似文献   

4.
The effects of a heat sink and the source size and location on the entropy generation, MHD natural convection flow and heat transfer in an inclined porous enclosure filled with a Cu-water nanofluid are investigated numerically. A uniform heat source is located in a part of the bottom wall, and a part of the upper wall of the enclosure is maintained at a cooled temperature, while the remaining parts of these two walls are thermally insulated. Both the left and right walls of the enclosure are considered to be adiabatic. The thermal conductivity and the dynamic viscosity of the nanofluid are represented by different verified experimental correlations that are suitable for each type of nanoparticle. The finite difference methodology is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published works is performed, and the results show a very good agreement. The results indicate that the Nusselt number decreases via increasing the nanofluid volume fraction as well as the Hartmann number. The best location and size of the heat sink and the heat source considering the thermal performance criteria and magnetic effects are found to be D?=?0.7 and B?=?0.2. The entropy generation, thermal performance criteria and the natural heat transfer of the nanofluid for different sizes and locations of the heat sink and source and for various volume fractions of nanoparticles are also investigated and discussed.  相似文献   

5.
The forced convection of nanofluid flow in a long microchannel is studied numerically according to the finite volume approach and by using a developed computer code. Microchannel domain is under the influence of a magnetic field with uniform strength. The hot inlet nanofluid is cooled by the heat exchange with the cold microchannel walls. Different types of nanoparticles such as Al2O3 and Ag are examined while the base fluid is considered as water. Reynolds number are chosen as Re=10 and Re=100. Slip velocity and temperature jump boundary conditions are simulated along the microchannel walls at different values of slip coefficient for different amounts of Hartmann number. The investigation of magnetic field effect on slip velocity and temperature jump of nanofluid is presented for the first time. The results are shown as streamlines and isotherms; moreover the profiles of slip velocity and temperature jump are drawn. It is observed that more slip coefficient corresponds to less Nusselt number and more slip velocity especially at larger Hartmann number. It is recommended to use Al2O3-water nanofluid instead of Ag-water to increase the heat transfer rate from the microchannel walls at low values of Re. However at larger amounts of Re, the nanofluid composed of nanoparticles with higher thermal conductivity works better.  相似文献   

6.
The thermophysical properties of the nanofluid saturated porous media are used in this work to optimize the thermal design of a spherical electronic device. Quantification of free convective heat transfer has been numerically determined by means of the finite volume method using the SIMPLE algorithm. The Rayleigh number based on the component diameter and water characteristics varies between 6.5x106 and 1.32x109, given the power generated during operation of this active component. The latter is disposed in the center of another sphere maintained isothermal. Its cooling is achieved by means of a porous medium saturated with a water based - Copper nanofluid whose volume fraction varies between 0 (pure water) and 10%. The thermal conductivity of the porous material's matrix ranges from 0 to 40 times that of the base fluid (water). Results of this work show that convective heat transfer systematically increases with this ratio according to a function depending on the Rayleigh number in the whole range of the considered volume fraction. The average Nusselt number also increases with the Rayleigh number according to a conventional power type law while influence of the fraction volume is moderate in the 2-10% range. The results are in agreement with those of previous works for particular thermal conditions. In order to optimize the thermal design of this electronic device, a correlation is proposed, allowing determination of the Nusselt number for any combination of the three influencing parameters for applications in various engineering fields, includind electronics.  相似文献   

7.
8.
This research presents the applications of entropy generation phenomenon in incompressible flow of Jeffrey nanofluid in the presence of distinct thermal features. The novel aspects of various features, such as Joule heating, porous medium, dissipation features, and radiative mechanism are addressed. In order to improve thermal transportation systems based on nanomaterials, convective boundary conditions are introduced. The thermal viscoelastic nanofluid model is expressed in terms of differential equations. The problem is presented via nonlinear differential equations for which analytical expressions are obtained by using the homotopy analysis method (HAM). The accuracy of solution is ensured. The effective outcomes of all physical parameters associated with the flow model are carefully examined and underlined through various curves. The observations summarized from current analysis reveal that the presence of a permeability parameter offers resistance to the flow. A monotonic decrement in local Nusselt number is noted with Hartmann number and Prandtl number. Moreover, entropy generation and Bejan number increases with radiation parameter and fluid parameter.  相似文献   

9.
10.
Present study is devoted to analyze the magnetohydrodynamics (MHD) squeezed flow of nanofluid over a sensor surface. Modeling of the problem is based on the geometry and the interaction of three different kinds of metallic nanoparticles namely: copper (Cu), alumina (Al2O3) and titanium dioxide (TiO2) with the homogeneous mixture of base fluid (water). The self-similar numerical solutions are presented for the reduced form of the system of coupled ordinary differential equations. The effects of nanoparticles volume friction, permeable velocity and squeezing parameter for the flow and heat transfer within the boundary layer are presented through graphs. Comparison among the solvent are constructed for both skin friction and Nusselt number. Flow behavior of the working nanofluid according to the present geometry has analyzed through Stream lines. Conclusion is drawn on the basis of entire investigation and it is found that in squeezing flow phenomena Cu–water gives the better heat transfer performance as compare with the rest of mixtures.  相似文献   

11.
The authors scrutinize the steady, MHD flow of SiO2−MoS2/water hybrid nanofluid towards two different geometries i.e. a wedge and a cone. The Tiwari and Das model is implemented with a generalized–Fourier's model, popularized as Cattaneo-Christov heat flux model. Analysis of heat transfer also incorporates the effects of suction, heat generation and thermal radiation. To showcase the relationship between engineering quantities and pertinent parameters involved in the study, the correlation coefficient for heat transfer coefficient and the skin friction coefficient is computed followed by the computation of probable error and statistical declaration. Similarity transformations are utilized to remodel the constitutive laws of flow in non-dimensional form. Numerical computation of non-linear, coupled O.D.E.’s is performed with the support of the Runge-Kutta-Fehlberg scheme and shooting method. Graphical and tabular illustrations of computed results are provided to report the variation in flow properties with the fluctuation in physical parameters. In both cases, i.e. flow close to a wedge and a cone, the temperature of hybrid nanofluid enhances on intensifying the thermal radiation and experiences a decrement with thermal relaxation parameter and magnetic field. Rising values of the suction parameter, thermal relaxation parameter, and thermal radiation cause increment in heat transfer coefficient. Interestingly, it was spotted that the heat generation parameter has contrary effects on temperature distribution over the two geometries.  相似文献   

12.
A steady flow and heat transfer of a hybrid nanofluid past a permeable moving surface is investigated. In this study, 0.1 solid volume fraction of alumina (Al2O3) is fixed, then consequently, various solid volume fractions of copper (Cu) are added into the mixture with water as the base fluid to form Cu-Al2O3/water hybrid nanofluid. The similarity equations are obtained by converting the governing equations of the hybrid nanofluid using the technique of similarity transformation. The bvp4c function available in Matlab software is used to solve the similarity equations numerically. The numerical results are obtained for selected parameters and discussed in detail. It is found that hybrid nanofluid enhances the heat transfer rate compared to the regular nanofluid. The results show that two solutions exist up to a certain value of the moving parameter and suction strengths. The critical value in which the solution is in existence decreases as nanoparticle volume fractions increase. The temporal stability analysis is conducted in determining the stability of the dual solutions, and it is revealed that only one of them is stable and physically reliable.  相似文献   

13.
The thermal attributes of porous fin due to radiation and natural convection have been carried out in the presence of nanofluid flow. The geometry of the fin taken for the analysis is rectangular profiled longitudinal fin. The temperature-dependent internal heat generation condition is also considered along with Darcy's model. The two types of nanofluid containing titanium alloy(Ti6Al4V) and aluminium alloy(AA7075) immersed in water is considered for the investigation.The modelled nonlinear ordinary differential equation is numerically solved by the Runge–Kutta–Fehlberg technique. The impact of geometric parameter on the heat transfer analysis of the fin due to the flow of both nanofluids is plotted and consequences are physically interpreted. It is observed that the presence of the water-based titanium alloy better enhances the fin heat transfer rate.  相似文献   

14.
This experimental study deals with cooling electronics contained in a hemispherical cavity whose cupola is maintained isothermal, being its base inclined at an angle varying from 0° (horizontal disc with the cupola oriented upwards) to 135°. The active component is a dome centered on this base. The space between the differentially heated elements of the assembly is filled with a porous medium of high porosity saturated by a water–copper nanofluid whose volume fraction varies between 0% (pure water) and 7%. The Rayleigh number based on the radius of the cupola reaches high values up to 7.29 × 1010 given the important surface heat flux generated by the device during operation. The ratio between the thermal conductivity of the solid matrix and that of the base fluid ranges between 0 (interstitial volume without porous medium) and 41.4 corresponding to the intended applications. This experimental study done with an industrial prototype at scale 1 quantifies the natural convective heat transfer via the Nusselt number determined for many configurations obtained by varying the solid-fluid thermal conductivity ratio, the inclination angle, the Rayleigh number, and the volume fraction. The study clearly shows that the cooling performance of the Cu-H2O nanofluid degrades with its age and the number of times it has been used. Analysis of the results reproducibility also proves the irreversibility of the performance. The measured values were compared with those obtained in a recent numerical study based on the volume control method. The observed deviations taking into account the experimental uncertainty margins validate the mathematical model implemented in the numerical approach.  相似文献   

15.
The main interest of the present work is to fundamentally investigate the flow characteristics and heat transfer of a hybrid Cu-Al2O3/water nanofluid due to a radially stretching/shrinking surface with the mutual effects of MHD, suction and Joule heating. The surface is permeable to physically allow the wall mass fluid suction. Tiwari and Das model of nanofluid is used with the new thermophysical properties of hybrid nanofluid to represent the problem. A similarity transformation is adopted to convert the governing model (PDEs) into a nonlinear set of ordinary differential equations (ODEs). A bvp4c solver in MATLAB software is employed to numerically compute the transformed system. The numerical results are discussed and graphically manifested in velocity and temperature profiles, as well as the skin friction coefficient and heat transfer rate with the pertinent values of the dimensionless parameters namely magnetic, Cu volume fraction, suction and Eckert number. The Eckert number has no impact on the boundary layer separation while the higher value of the suction parameter may affect the heat transfer performance. The presence of dual solutions (first and second) is seen on all the profiles within a limited range of the physical parameters. The stability analysis is executed, and it is validated that the first solution is the real solution.  相似文献   

16.
The nanofluid and porous medium together are able to fulfill the requirement of high cooling rate in many engineering problems. So, here the impact of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium is examined. Moreover, the thermal radiation and viscous dissipation effects are considered. The problem governing partial differential equations are converted into self-similar coupled ordinary differential equations and those are numerically solved by the shooting method. The computed results can reveal many vital findings of practical importance. Firstly, dual solutions exist for decelerating unsteady flow and for accelerating unsteady and steady flows, the solution is unique. The presence of nanoparticles affects the existence of dual solution in decelerating unsteady flow only when the medium of the flow is a porous medium. But different shapes of nanoparticles are not disturbing the dual solution existence range, though it has a considerable impact on thermal conductivity of the mixture. Different shapes of nanoparticles act differently to enhance the heat transfer characteristics of the base fluid, i.e., the water here. On the other hand, the existence range of dual solutions becomes wider for a larger permeability parameter related to the porous medium. Regarding the cooling rate of the heated surface, it rises with the permeability parameter, shape factor (related to various shapes of Cu-nanoparticles), and radiation parameter. The surface drag force becomes stronger with the permeability parameter. Also, with growing values of nanoparticle volume fraction, the boundary layer thickness (BLT) increases and the thermal BLT becomes thicker with larger values of shape factor. For decelerating unsteady flow, the nanofluid velocity rises with permeability parameter in the case of upper branch solution and an opposite trend for the lower branch is witnessed. The thermal BLT is thicker with radiation parameter. Due to the existence of dual solutions, a linear stability analysis is made and it is concluded that the upper branch and unique solutions are stable solutions.  相似文献   

17.
齐聪  何光艳  李意民  何玉荣 《物理学报》2015,64(2):24703-024703
纳米流体作为一种较高的导热介质, 广泛应用于各个传热领域. 鉴于纳米颗粒导热系数和成本之间的矛盾, 本文提出了一种混合纳米流体. 为了研究混合纳米流体颗粒间相互作用机理和自然对流换热特性, 在考虑颗粒间相互作用力的基础上, 利用多尺度技术推导了纳米流体流场和温度场的格子Boltzmann方程, 通过耦合流动和温度场的演化方程, 建立了Cu/Al2O3水混合纳米流体的格子Boltzmann模型, 研究了混合纳米流体颗粒间的相互作用机理和纳米颗粒在腔体内的分布. 发现在颗粒间相互作用力中, 布朗力远远大于其他作用力, 温差驱动力和布朗力对纳米颗粒的分布影响最大. 分析了纳米颗粒组分、瑞利数对自然对流换热的影响, 对比了混合纳米流体(Cu/Al2O3-水)与单一金属颗粒纳米流体(Al2O3-水)的自然对流换热特性, 发现混合纳米流体具有更强的换热特性.  相似文献   

18.
Nanofluids, because of their enhanced heat transfer capability as compared to normal water/glycol/oil based fluids, offer the engineer opportunities for development in areas where high heat transfer, low temperature tolerance and small component size are required. In this present paper, the hydrodynamic and thermal fields of a water–γAl2O3 nanofluid in a radial laminar flow cooling system are considered. Results indicate that considerable heat transfer enhancement is possible, even achieving a twofold increase in the case of a 10% nanoparticle volume fraction nanofluid. On the other hand, an increase in wall shear stress is also noticed with an increase in particle volume concentration.  相似文献   

19.
郭亚丽  徐鹤函  沈胜强  魏兰 《物理学报》2013,62(14):144704-144704
利用格 子 Boltzmann方法模拟矩形腔内纳米流体Rayleigh-Benard对流, 得到温度场和流线分布, 比较分析不同Ra数、体积分数、粒径下纳米流体对流换热的变化情况. 结果表明: 在相同的Ra 数和体积分数下, 纳米流体的对流换热随着粒径的增大而减弱; 在相同的Ra数和粒径下, 纳米流体的对流换热随着体积分数增大而增强. 关键词: 纳米流体 Raleigh-Benard 多相流 格子Boltzmann方法  相似文献   

20.
In the present contribution, a numerical treatment is provided to describe unsteady nanofluid flow near a vertical heated wavy surface. A memorable feature of the present work is the investigation of nanofluid flow associated with thermal radiation that acts as a catalyst for heat transfer rates. Likewise, the effectiveness of variable viscosity is examined as it controls fluid flow as well as heat transfer. It is necessary to study heat and mass transfer for complex geometries because predicting heat and mass transfer for irregular surfaces is a topic of fundamental importance, and irregular surfaces frequently appear in many applications, such as flat-plate solar collectors and flat-plate condensers in refrigerators. A simple coordinate transformation from the wavy surface into a flat one is employed. The non-dimensional boundary layer equations that governing both heat transfer and nanofluid flow phenomena along the wavy surface are solved via a powerful numerical approach called the implicit Chebyshev pseudospectral (ICPS) method with Mathematica code. A comparison graph of the current numerical computation and the published data shows a perfect match. Figures depict the effect of various physical parameters on nanofluid velocities, temperature, salt concentration, nanoparticle concentration, skin friction, Sherwood, nanoparticle Sherwood, and Nusselt numbers. According to the numerical results, increasing the variable viscosity parameter value causes a drop in the local skin friction coefficient value and an increase in the steady-state axial nanofluid velocity profile near the wavy surface. Furthermore, as heat radiation is increased, the local Nusselt number decreases but the nanoparticle Sherwood number increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号